
The LATEX
verifycommand

Package
v1.00 — 2024/01/11

© 2024 Brian Dunn
https://github.com/bdtc/verifycommand

Verifies definitions have not changed.

Abstract

For package authors who patch code from other packages.
To improve reliability, the verifycommand package provides a way to verify

that macros or environments have not changed. This allows a package author to
check before patching a definition. If a definition is not as expected, a warning is
issued. At the end of the compile, a list of all changed definitions is displayed.

License:
This work may be distributed and/or modified under the conditions of the LaTeX
Project Public License, either version 1.3 of this license or (at your option) any later
version. The latest version of this license is in http://www.latex-project.org/lppl.txt
and version 1.3 or later is part of all distributions of LaTeX version 2005/12/01 or later.

https://github.com/bdtc/verifycommand

verifycommand 2

Contents
1 Introduction 3

2 How it works 3

3 How to use verifycommand 4

3.1 The user interface . 4

3.2 Placing the macros . 4

3.3 Finding the checksums of the current definitions 4

3.4 Assigning the checksums . 5

3.5 When a definition is changed . 6

3.6 Disabling the package . 6

4 Code 7

4.1 Package requirements . 7

4.2 Package options . 7

4.3 Support macros . 7

4.4 MD5 hashing . 7

4.5 Issuing warnings . 8

4.6 User interface . 10

5 verifycommand packagemaintenance 14

Change History 15

Index of Objects 16

verifycommand 3

1 Introduction

Patching a macro or environment from another package risks the possibility that the
other author has made an update and changed something unexpected, breaking your
own package when it tries to apply the patch.

The traditional way to check a definition you wish to modify is to copy the expected
definition into your package under a new name, then compare to see if the current
definition is the same as it was when your package was first created. For a few defini-
tions this may work well, but as the number of patches goes up things get more and
more unwieldy.

The verifycommand package usesMD5 checksums instead of copying entire defini-
tions. If something has changed, a warning is issued telling the name of the defintion,
and optionally telling the name of your own package and the package being modified.
This improves code reliability, and allows package authors to get an early warning
when an author of some other package has made an unexpected change.

In many cases, the patch or replacement may still function correctly even when the
original has changed in some way. For this reason, only a warning is issued, not an
error.

2 How it works

\VerifyCommand and \VerifyEnvironment are used to test whether a definition has
changed. Each definition is given an MD5 checksum, which is compared to the ex-
pected checksum given as arguments of \VerifyCommand and \VerifyEnvironment.
If a checksumdoes notmatch, a warning is issued, flagging the definition for attention.

The MD5 checksum is of the text of the code part of the underlying definition, as it
would be displayed by the \meaning command. For environments, the end code is
checked separately. The checkdetects changes in the replacement text of thedefinition,
andmay or may not detect changes in the number or type of parameters, \long, or
type of robustness, depending on the type of definition. Some definitions may have
the same checksum if they have the same replacement code but different argument
types, for example a \NewDocumentCommandwith twomandatory arguments vs another
with one optional and one mandatory, if they both have the same replacement code.

When something does not match, the current checksum is printed to the termi-
nal, and the author may copy/paste that into the parameter of \VerifyCommand or
\VerifyEnvironment to update the expected values.

verifycommand 4

3 How to use verifycommand

3.1 The user interface

[⟨yourpackagename⟩] [⟨theirpackagename⟩] {⟨\macroname⟩} {⟨MD5 checksum⟩}\VerifyCommand

[⟨yourpackagename⟩] [⟨theirpackagename⟩] {⟨envname⟩}\VerifyEnvironment

{⟨begin MD5 checksum⟩} {⟨end MD5 checksum⟩}

Use one of these macros just before patching a macro or environment, as seen below.

Note that there is one checksum for \VerifyCommand, but there are two checksums
for \VerifyEnvironment: once for the begin section and one for the end section.

If there is only one optional argument, it is used as your package name.

3.2 Placing themacros

When first using verifycommand, use empty checksums, placing \VerifyCommand
or \VerifyEnvironment before each place where something gets patched. This is
probably not required where things are entirely replaced, or prepended or appended.

\VerifyCommand{\LaTeX}{}
<patch \LaTeX here>

\VerifyCommand[mypackage]{\textcolor}{}
<patch \textcolor here>

\VerifyCommand[mypackage][graphics]{\rotatebox}{}
<patch \rotatebox here>

\VerifyEnvironment{tabbing}{}{}
<patch tabbing here>

3.3 Finding the checksums of the current definitions

In the above examples, testing \LaTeX would print a warning showing the correct
MD5 checksum. Testing \textcolor would do the same, but as a \PackageWarning
frommypackage. Testing \rotateboxwould also mention the package being tested,
graphics. Testing tabbing issues a separate warning for the begin and end sections.

Warning: Something may fail. A definition has changed:
\LaTeX
FAAAC6146C9A80F46A1F029B67923851
on input line 464.

verifycommand 5

Package mypackage Warning: Something may fail. A definition has changed:
(mypackage) \textcolor
(mypackage) E1E2B5A908AA1BCDDF6BEA038596A381
(mypackage) on input line 465.

Package mypackage Warning: Something may fail. A definition has changed:
(mypackage) graphics: \rotatebox
(mypackage) 2472999B02C97AC847128AF24C55D150
(mypackage) on input line 466.

Warning: Something may fail. A definition has changed:
tabbing
1AD73B4527AD30969CF3219F2FB1306B
on input line 518.

Warning: Something may fail. A definition has changed:
(end)tabbing
E8326AC43EE0A6E922A20F2A798BD177
on input line 518.

And at the end of the compile, a summary is given:

WARNING: Something may fail.
Definition changed: \LaTeX
Definition changed: FAAAC6146C9A80F46A1F029B67923851
Definition changed: \textcolor
Definition changed: E1E2B5A908AA1BCDDF6BEA038596A381
Definition changed: graphics: \rotatebox
Definition changed: 2472999B02C97AC847128AF24C55D150
Definition changed: tabbing
Definition changed: 1AD73B4527AD30969CF3219F2FB1306B
Definition changed: (end)tabbing
Definition changed: E8326AC43EE0A6E922A20F2A798BD177

3.4 Assigning the checksums

Copy the checksums from the warnings messages into the source. When this is done,
there are no more verifycommandwarnings unless one of these defintions changes:

\VerifyCommand{\LaTeX}{FAAAC6146C9A80F46A1F029B67923851}
<patch \LaTeX here>

\VerifyCommand[mypackage]{\textcolor}
{E1E2B5A908AA1BCDDF6BEA038596A381}

<patch \textcolor here>

verifycommand 6

\VerifyCommand[mypackage][graphics]{\rotatebox}
{2472999B02C97AC847128AF24C55D150}

<patch \rotatebox here>

\VerifyEnvironment{tabbing}
{1AD73B4527AD30969CF3219F2FB1306B}% beginning code
{E8326AC43EE0A6E922A20F2A798BD177}% endind code

<patch tabbing here>

3.5 When a definition is changed

When something being verified changes at a later time, the resulting warning will let
the user know that the patches may not work as expected. Because the test is done
before the patch, this warning will be issued before the patch is even attempted.

When testing many packages in bulk, a utility such as grep can report the changed
definitions. Search the log file for “Definition changed:”.

3.6 Disabling the package

verifycommand relies on knowing the internal structure of various kinds of definitions.
It is possible that these may change some day, causing endless warnings for that kind
of definition. Should that happen, it will be necessary to disable the verifycommand
package until it can be updated. Use the disable option to do so.

\usepackage[disable]{verifycommand}

verifycommand 7

4 Code

4.1 Package requirements

1 \RequirePackage{etoolbox}
2 \RequirePackage{iftex}

4.2 Package options

Package option to disable all functions.

Is the package enabled?VERCMD@enable (bool)

3 \newbool{VERCMD@enable}
4 \booltrue{VERCMD@enable}

Turn off all functions.disable (Opt)

5 \DeclareOption{disable}{%
6 \boolfalse{VERCMD@enable}%
7 \typeout{----}%
8 \typeout{Package verifycommand: Turned off by option ’disable’.}%
9 \typeout{----}%
10 }
11
12 \ProcessOptions\relax

4.3 Support macros

\VERCMD@backslash The literal \ character.

This is used later because some internal definitions use double \\ as part of their
name.

13 \catcode‘\&=0
14 &catcode‘&\=12
15 &def&VERCMD@backslash{\}
16 &catcode‘&\=0
17 \catcode‘\&=4

4.4 MD5 hashing

TheMD5 hash is used for lateximage filenames for SVGmath.

18 \newcommand{\VERCMD@mdfivesum}[1]{%
19 \PackageError{verifycommand}
20 {No MD5 macro was found}

verifycommand 8

21 {%
22 Verifycommand must find the macros \protect\pdfmdfivesum\space
23 or \protect\mdfivesum.%
24 }
25 }

The default for PDF LATEX, DVI LATEX, upLATEX, etc:

26 \ifdef{\pdfmdfivesum}
27 {\let\VERCMD@mdfivesum\pdfmdfivesum}
28 {}

For LuaLATEX:

29 \ifLuaTeX
30 \RequirePackage{pdftexcmds}
31 \let\VERCMD@mdfivesum\pdf@mdfivesum
32 \fi

For X ELATEX:

33 \ifXeTeX
34 \@ifundefined{pdffivesum}{}
35 {\let\VERCMD@mdfivesum\pdfmdfivesum}
36 \@ifundefined{mdfivesum}{}
37 {\let\VERCMD@mdfivesum\mdfivesum}
38 \fi

\VERCMD@mdfive {⟨\macroname⟩} ComputeMD5 checksum, store in \VERCMD@temp.

39 \def\VERCMD@mdfive#1{%
40 \edef\VERCMD@temp{\VERCMD@mdfivesum{\meaning#1}}%
41 }

4.5 Issuing warnings

\VERCMD@whatchanged Accumulates a list of changed definitions.

42 \newcommand*{\VERCMD@whatchanged}{}

\VERCMD@addchanged {⟨MD5sum⟩} {⟨text⟩} Add to the list of changed definitions.

43 \newcommand*{\VERCMD@addchanged}[2]{%
44 \ifdefempty{\VERCMD@whatchanged}%
45 {}%
46 {\apptocmd{\VERCMD@whatchanged}{^^J}{}{}}%
47 \apptocmd{\VERCMD@whatchanged}{Definition changed: #2^^J}{}{}%
48 \apptocmd{\VERCMD@whatchanged}{Definition changed: \space\space\space#1}{}{}%
49 }

verifycommand 9

When the compile is finished, print the accumulated list of changed definitions.

50 \AfterEndDocument{
51 \ifdefempty{\VERCMD@whatchanged}{}{%
52 \typeout{--------------------------------}%
53 \typeout{WARNING: Something may fail.}%
54 \typeout{\VERCMD@whatchanged}%
55 \typeout{--------------------------------}%
56 }
57 }

\VERCMD@ProgWarning {⟨text⟩} Warning without a package name.

58 \def\VERCMD@ProgWarning#1{%
59 \GenericWarning{%
60 % (\jobname)\@spaces\@spaces%
61 \@spaces\@spaces
62 }{%
63 Warning: #1%
64 }%
65 }

\VERCMD@Warning {⟨yourpackage⟩} {⟨theirpackage⟩} {⟨defn name⟩}

If no package names, print a general warning. If package names are given, print a
\PackageWarning.

66 \newcommand*{\VERCMD@Warning}[3]{%
67 \ifblank{#1}%
68 {%
69 \VERCMD@ProgWarning{%
70 Something may fail. A definition has changed:\MessageBreak
71 \ifblank{#2}{}{#2: }\string#3\MessageBreak
72 \VERCMD@temp\MessageBreak
73 }
74 \expandafter\VERCMD@addchanged\expandafter{\VERCMD@temp}{\string#3}%
75 }%
76 {%
77 \PackageWarning{#1}{%
78 Something may fail. A definition has changed:\MessageBreak%
79 \ifblank{#2}{}{#2: }%
80 \string#3\MessageBreak%
81 \VERCMD@temp\MessageBreak%
82 }%
83 \expandafter\VERCMD@addchanged\expandafter{\VERCMD@temp}{\ifblank{#2}{}{#2: }\string#3}%
84 }%
85 }

86 \ExplSyntaxOn

verifycommand 10

4.6 User interface

\VerifyCommand [⟨yourpackage⟩] [⟨theirpackage⟩] {⟨\commandname⟩} {⟨MD5 checksum⟩}

Test for various kinds of definitions, and convert them toMD5 checksums.

87 \NewDocumentCommand{\VerifyCommand}{O{} O{} m m}{%

Only if the package is enabled:

88 \ifbool{VERCMD@enable}{%

Default to an un-detected definition type:

89 \edef\VERCMD@temp{Unknown~definition}%

For \NewDocumentCommand, the macro name is “\name code” with a space in the mid-
dle.

90 % % NewDocumentCommand:
91 \ifcsdef{\cs_to_str:N #3~code}%
92 {%
93 \expandafter\VERCMD@mdfive%
94 \csname \cs_to_str:N #3~code\endcsname%
95 }%
96 {%

For \DeclareRobustCommandwith an optional argument, themacro name is “\\name ”
with a two backslashes and a trailing space.

97 % % DeclareRobustCommmand with option:
98 \ifcsdef{\VERCMD@backslash\cs_to_str:N #3~}%
99 {%
100 \expandafter\VERCMD@mdfive%
101 \csname \cs_to_str:N #3~code\endcsname%
102 }%
103 {%

For \DeclareRobustCommand, the macro name is “\name ” with a trailing space.

104 % % DeclareRobustCommand:
105 \ifcsdef{\cs_to_str:N #3~}%
106 {%
107 \expandafter\VERCMD@mdfive%
108 \csname \cs_to_str:N #3~\endcsname%
109 }%
110 {%

For \newcommandwith an option, the macro name is “\\name”, with two backslashes.

111 % % newcommand w/ option:
112 \ifcsdef{\VERCMD@backslash\cs_to_str:N #3}%

verifycommand 11

113 {%
114 \expandafter\VERCMD@mdfive%
115 \csname \VERCMD@backslash\cs_to_str:N #3\endcsname%
116 }%

For \newcommand, the macro name is “\name”.

If none match, the default unknown definition warning is show in place of the check-
sum.

117 {%
118 % % newcommand:
119 \ifdef{#3}%
120 {\VERCMD@mdfive#3}%
121 {}%
122 }%
123 }%
124 }%
125 }%

If the checksum does not match the expected value, issue a warning.

126 \ifdefstring{\VERCMD@temp}{#4}%
127 {}%
128 {%
129 \VERCMD@Warning{#1}{#2}{#3}%
130 }%
131 }% if package enabled
132 {}% if package not enabled
133 }

\VerifyEnvironment [⟨yourpackage⟩] [⟨theirpackage⟩] {⟨\commandname⟩} {⟨beginMD5 checksum⟩} {⟨end
MD5 checksum⟩}

Test both the begin and end section of the environment.

134 \NewDocumentCommand{\VerifyEnvironment}{O{} O{} m m m}{%

Only if the package is enabled:

135 \ifbool{VERCMD@enable}{%

Default to an un-detected definition type:

136 \edef\VERCMD@temp{Unknown~definition}%

For \NewDocumentEnvironment, the macro name is “\environment name code” with
internal spaces.

137 % % NewDocumentEnvironment:
138 \ifcsdef{environment~#3~code}%
139 {%

verifycommand 12

140 \expandafter\VERCMD@mdfive%
141 \csname environment~#3~code\endcsname%
142 }%
143 {%

For \newenvironmentwith an optional argument, the macro name is “\\name”, with
two backslashes.

144 % % newenvironment with option:
145 \ifcsdef{\VERCMD@backslash#3}%
146 {%
147 \expandafter\VERCMD@mdfive%
148 \csname \VERCMD@backslash#3\endcsname%
149 }%
150 {%

For \newenvironment, the macro name is “\name”.

151 % % newenvironment:
152 \ifcsdef{#3}%
153 {\expandafter\VERCMD@mdfive\csname #3\endcsname}%
154 {}%
155 }%
156 }%

If the checksum does not match the expected value, issue a warning.

157 \ifdefstring{\VERCMD@temp}{#4}%
158 {}%
159 {%
160 \VERCMD@Warning{#1}{#2}{#3}%
161 }%

Reset the default to an un-detected definition type:

162 \edef\VERCMD@temp{Unknown~definition}%

For\NewDocumentEnvironment, the endingmacroname is “\environment name end aux ”,
with spaces and a trailing space.

163 % % end DocumentEnvironment:
164 \ifcsdef{environment~#3~end~aux~}%
165 {%
166 \expandafter\VERCMD@mdfive
167 \csname environment~#3~end~aux~\endcsname%
168 }%
169 {%

For \newenvironment, the ending macro name is “\endname”.

170 % % end newenvironment:
171 \ifcsdef{end#3}%

verifycommand 13

172 {%
173 \expandafter\VERCMD@mdfive%
174 \csname end#3\endcsname%
175 }%
176 {}%
177 }%

If the checksum does not match the expected value, issue a warning.

178 \ifdefstring{\VERCMD@temp}{#5}%
179 {}%
180 {%
181 \VERCMD@Warning{#1}{#2}{(end)#3}%
182 }%
183 }% if package enabled
184 {}% if package not enabled
185 }

186 \ExplSyntaxOff

verifycommand 14

5 verifycommand packagemaintenance

To compile verifycommand.sty and \verifycommand.pdf from verifycommand.dtx
and verifycommand.ins:

pdflatex verifycommand.ins
pdflatex verifycommand.dtx
pdflatex verifycommand.dtx
makeindex -s gglo.ist -o verifycommand.gls verifycommand.glo
splitindex verifycommand.idx -- -s gind.ist
pdflatex verifycommand.dtx
pdflatex verifycommand.dtx

Change History

v1.00
General: 2024/01/11 Initial version. . 1

15

Index of Objects

This is an index of macros, environments, booleans, counters, lengths, packages,
classes, options, keys, files, and various other programming objects. Each is listed by
itself, and also by category. In some cases, they are further subdivided by [class].

Numbers written in italic refer to the page where the corresponding entry is described;
numbers underlined refer to the code line of the definition.

B
Booleans:

VERCMD@enable 7

D
disable (option) 7

O
Options:

disable . 7

V
\VERCMD@addchanged 43
\VERCMD@backslash 13
VERCMD@enable (boolean) 7
\VERCMD@mdfive 39
\VERCMD@ProgWarning 58
\VERCMD@Warning 66
\VERCMD@whatchanged 42
\VerifyCommand 4, 87
\VerifyEnvironment 4, 134

16

	1 Introduction
	2 How it works
	3 How to use verifycommand
	3.1 The user interface
	3.2 Placing the macros
	3.3 Finding the checksums of the current definitions
	3.4 Assigning the checksums
	3.5 When a definition is changed
	3.6 Disabling the package

	4 Code
	4.1 Package requirements
	4.2 Package options
	4.3 Support macros
	4.4 MD5 hashing
	4.5 Issuing warnings
	4.6 User interface

	5 verifycommand package maintenance
	Change History
	Index of Objects
	B
	D
	O
	V

