Package 'FnR'

May 6, 2024
Title Inbreeding and Numerator Relationship Coefficients
Version 1.1.0
Description Compute inbreeding coefficients using the method of Meuwis-
sen and Luo (1992) doi:10.1186/1297-9686-24-4-305, and numerator relationship coeffi-
cients between individuals us-
ing the method of Van Vleck (2007) https://pubmed.ncbi.nlm.nih.gov/18050089/.
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.3.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
URL https://github.com/nilforooshan/FnR
BugReports https://github.com/nilforooshan/FnR/issues
NeedsCompilation no
Author Mohammad Ali Nilforooshan [aut, cre]
(https://orcid.org/0000-0003-0339-5442)
Maintainer Mohammad Ali Nilforooshan m.a.nilforooshan@gmail.com
Repository CRAN
Date/Publication 2024-05-05 23:30:02 UTC

R topics documented:

$$
\text { calcR . } 2
$$

resume_inbreed 3
Index 5

```
calcR
    Compute numerator relationship coefficients between two distinct
    groups of individuals
```


Description

Compute numerator relationship coefficients between two distinct groups of individuals

Usage

calcR(ped, set1, set2, type = "notdam-notsire", f = c(), d = c())

Arguments

ped : A data frame with integer columns corresponding to ID, SIRE, and DAM. IDs should be sequential, starting from 1. Missing parents (SIRE and DAM) are denoted as 0 .
set1 : A set of individual IDs.
set2 : A set of individual IDs, distinct from set1.
type : "notdam-notsire" (default), "sire-sire", or "dam-dam" relationships
"notdam-notsire" requires set1 and set2 individuals not to be members of ped\$DAM and ped\$SIRE, respectively.
"sire-sire" requires set1 and set2 individuals to be members of ped\$SIRE. "dam-dam" requires set1 and set2 individuals to be members of ped\$DAM.
f : (Optional) If available, the vector of inbreeding coefficients for the whole pedigree (without dummy progeny) or from the previous calculation of inbreeding coefficients with less number of animals in the pedigree.
d
: (Optional) If available, the vector of the diagonal elements of the diagonal matrix \mathbf{D} in $\mathbf{A}=\mathbf{T D T}^{\prime}$ where \mathbf{A} is the numerator relationship matrix, for the whole pedigree (without dummy progeny) or from the previous calculation of inbreeding coefficients with less number of animals in the pedigree.

Value

: Numerator relationship coefficients between set1 and set2 individuals in the form of a matrix (a partition of the numerator relationship matrix \mathbf{A}).

Examples

```
# A sample pedigree data frame:
ped <- data.frame(
    ID = 1:12,
    SIRE = c(0, 0, 0, 2, 2, 0, 4, 6, 0, 6, 10, 10),
    DAM = c(0, 0, 0, 1, 1, 0, 3, 5, 7, 8, 9, 0)
)
```

```
# Example 1: Calculate relationship coefficients between two groups of animals,
# one's members not among dams, and the members of the other not among sires.
calcR(ped, set1 = c(12, 6), set2 = c(11, 8), type = "notdam-notsire")
# Since `"notdam-notsire"` is the default type, `type = "notdam-notsire"` might be omitted.
# Example 2: Calculate relationship coefficients between dam 7 and dams 8 and 9.
calcR(ped, set1 = 7, set2 = 8:9, type = "dam-dam")
# Example 3: Calculate relationship coefficients between sires 2 & 6 and sires 4 & 10.
calcR(ped, set1 = c(2, 6), set2 = c(4, 10), type = "sire-sire")
# Example 5: Repeat example 2 with inbreeding coefficients provided.
f <- rep(0, 12)
f[10] <- 0.25
f[11] <- 0.015625
calcR(ped, set1 = 7, set2 = 8:9, type = "dam-dam", f = f)
# Example 6: Repeat example 3 with inbreeding and d coefficients provided.
d <- c(1, 1, 1, 0.5, 0.5, 1, 0.5, 0.5, 0.75, 0.5, 0.4375, 0.6875)
calcR(ped, set1 = c(2, 6), set2 = c(4, 10), type = "sire-sire", f = f, d = d)
```

resume_inbreed Calculate inbreeding coefficients from scratch or resume for new indi-
viduals in the pedigree

Description

Calculate inbreeding coefficients from scratch or resume for new individuals in the pedigree

Usage

resume_inbreed(ped, $f=c(), d=c()$, export_d = FALSE)

Arguments

ped : A data frame with integer columns corresponding to ID, SIRE, and DAM. IDs should be sequential, starting from 1. Missing parents (SIRE and DAM) are denoted as 0 .
f
: (Optional) If available, the vector of inbreeding coefficients from the previous calculation of inbreeding coefficients with less number of animals in the pedigree.
d
: (Optional) If available, the vector of the diagonal elements of the diagonal matrix \mathbf{D} in $\mathbf{A}=\mathbf{T D T}^{\prime}$ from the previous calculation of inbreeding coefficients with less number of animals in the pedigree, where \mathbf{A} is the numerator relationship matrix.
export_d : FALSE (default) or TRUE. If TRUE, vector d is retuned for future use.

Value

: Vector of inbreeding coefficients if export_d == FALSE, or a list containing the vector of inbreeding coefficients and the vector of d coefficients if export_d == TRUE.

Examples

```
# A sample pedigree data frame:
ped <- data.frame(
    ID = 1:12,
    SIRE = c(0, 0, 0, 2, 2, 0, 4, 6, 0, 6, 10, 10),
    DAM = c(0, 0, 0, 1, 1, 0, 3, 5, 7, 8, 9, 0)
)
oldped <- ped[1:9, ]
(oldrun <- resume_inbreed(oldped, export_d = TRUE))
resume_inbreed(ped)
resume_inbreed(ped, f = oldrun$f)
resume_inbreed(ped, f = oldrun$f, d = oldrun$d)
```


Index

```
calcR,2
resume_inbreed, 3
```

