

# Package ‘LLMing’

January 8, 2026

**Title** Large Language Model (LLM) Tools for Psychological Text Analysis

**Version** 1.1.0

**Maintainer** Lindley Slipetz <ddj6tu@virginia.edu>

**Description** A collection of large language model (LLM) text analysis methods designed with psychological data in mind. Currently, LLMing (aka ``lemming'') includes a text anomaly detection method based on the angle-based subspace approach described by Zhang, Lin, and Karim (2015) and a text generation method. [<doi:10.1016/j.ress.2015.05.025>](https://doi.org/10.1016/j.ress.2015.05.025).

**License** MIT + file LICENSE

**Encoding** UTF-8

**RoxygenNote** 7.3.3

**Imports** Rdpack, quanteda, stopwords, stringi, reticulate, text, dbscan, pracma, stats, jsonlite

**SystemRequirements** Python (>= 3.10) with packages: torch, transformers, pandas, numpy

**RdMacros** Rdpack

**URL** <https://github.com/sliplr19/LLMing>

**BugReports** <https://github.com/sliplr19/LLMing/issues>

**NeedsCompilation** no

**Author** Lindley Slipetz [aut, cre],  
Teague Henry [aut],  
Siqi Sun [ctb]

**Depends** R (>= 4.1.0)

**Repository** CRAN

**Date/Publication** 2026-01-08 05:20:13 UTC

## Contents

|         |   |
|---------|---|
| embed   | 2 |
| G_thres | 3 |

|                        |   |
|------------------------|---|
| normahalo . . . . .    | 3 |
| pCOS . . . . .         | 4 |
| pCOS_row . . . . .     | 4 |
| rep_set . . . . .      | 5 |
| sim_SNN . . . . .      | 5 |
| textanomaly . . . . .  | 6 |
| text_datagen . . . . . | 6 |
| vector_SNN . . . . .   | 8 |
| z_score . . . . .      | 9 |

|              |           |
|--------------|-----------|
| <b>Index</b> | <b>10</b> |
|--------------|-----------|

---

|              |                                             |
|--------------|---------------------------------------------|
| <b>embed</b> | <i>Embed texts with a Transformer model</i> |
|--------------|---------------------------------------------|

---

## Description

Cleans a text column and converts it to a dataframe of numeric vectors via BERT embeddings. For the input dataframe, each row is one text entry.

## Usage

```
embed(dat, layers, keep_tokens = TRUE, tokens_method = NULL)
```

## Arguments

|               |                                                                                            |
|---------------|--------------------------------------------------------------------------------------------|
| dat           | A dataframe with text data, one text per row                                               |
| layers        | Integer vector specifying which model layers to aggregate from.                            |
| keep_tokens   | Logical, keep token-level embeddings in the returned object or discard them to save memory |
| tokens_method | Character scalar controlling how token-level embeddings are aggregated to word types       |

## Value

A dataframe where each row corresponds to one input text and each column is an embedding dimension

```
@examples df <- data.frame( text = c( "I slept well and feel great today!", "I saw from friends and it went well.", "I think I failed that exam. I'm such a disappointment." "I think I failed that exam. I'm such a disappointment." ) )
```

```
emb_dat <- embed( dat = df, layers = 1, keep_tokens = FALSE, tokens_method = "mean" )
```

---

|         |                                       |
|---------|---------------------------------------|
| G_thres | <i>Thresholding of pCOS dataframe</i> |
|---------|---------------------------------------|

---

**Description**

Converts each column of a pCOS score matrix into binary indicators

**Usage**

```
G_thres(pCOS_mat, theta)
```

**Arguments**

|          |                          |
|----------|--------------------------|
| pCOS_mat | Dataframe of pCOS values |
| theta    | Numeric threshold        |

**Value**

A matrix of 0s and 1s of which cells meet the threshold

**Examples**

```
z_dat <- data.frame("A" = rnorm(500,0,1), "B" = rnorm(500,0,1), "C" = rnorm(500,0,1))
snn <- sim_SNN(z_dat, 10, 5)
vec_snn <- vector_SNN(z_dat, snn)
pCOSdat <- pCOS(z_dat, vec_snn)
G <- G_thres(pCOSdat, theta = 0.1)
```

---

|           |                            |
|-----------|----------------------------|
| normahalo | <i>Local outlier score</i> |
|-----------|----------------------------|

---

**Description**

Computes a normalized Mahalanobis distance score. Only features with nonzero scores in S receive nonzero Mahalanobis scores.

**Usage**

```
normahalo(z, rs, S)
```

**Arguments**

|    |                             |
|----|-----------------------------|
| z  | Dataframe of z scores       |
| rs | List of reference sets      |
| S  | Dataframe of numeric values |

**Value**

A dataframe of local outlier scores

---

|      |                                               |
|------|-----------------------------------------------|
| pCOS | <i>pCOS scores for every row of dataframe</i> |
|------|-----------------------------------------------|

---

**Description**

Applies pCOS\_row() to corresponding rows of two data frames, returning one pCOS value per row.

**Usage**

`pCOS(z_dat, vec_SNN)`

**Arguments**

|                      |                                                       |
|----------------------|-------------------------------------------------------|
| <code>z_dat</code>   | Numeric dataframe, typically z-scores                 |
| <code>vec_SNN</code> | Numeric dataframe, typically the output of vector_SNN |

**Value**

A dataframe with same dimensions as `z_dat`

---

|          |                                        |
|----------|----------------------------------------|
| pCOS_row | <i>Pairwise cosine-style row score</i> |
|----------|----------------------------------------|

---

**Description**

Given two numeric vectors, computes an average cosine-based similarity.

**Usage**

`pCOS_row(z, v_SNN)`

**Arguments**

|                    |                                             |
|--------------------|---------------------------------------------|
| <code>z</code>     | Numeric vector                              |
| <code>v_SNN</code> | Numeric vector, same size as <code>z</code> |

**Value**

A numeric vector

---

|         |                                                    |
|---------|----------------------------------------------------|
| rep_set | <i>The vectors of the shared nearest neighbors</i> |
|---------|----------------------------------------------------|

---

## Description

Creates a list of the vectors of the top shared nearest neighbors for each row of the z dataframe

## Usage

```
rep_set(z, snn)
```

## Arguments

|     |                                               |
|-----|-----------------------------------------------|
| z   | Dataframe of values of reference set          |
| snn | Dataframe of shared nearest neighbors indices |

## Value

A list of dataframes where each row of the dataframe is the vector representation of a given shared nearest neighbor

---

|         |                                         |
|---------|-----------------------------------------|
| sim_SNN | <i>Compute shared nearest neighbors</i> |
|---------|-----------------------------------------|

---

## Description

Builds a shared nearest neighbors matrix and, for each row (observation), returns the indices of the top neighbors with the largest SNN overlap counts

## Usage

```
sim_SNN(z_dat, k, tops)
```

## Arguments

|       |                                                                        |
|-------|------------------------------------------------------------------------|
| z_dat | A dataframe with numeric columns                                       |
| k     | An integer representing number of nearest neighbors                    |
| tops  | An integer representing how many of shared nearest neighbors to return |

## Value

A dataframe of top rows with shared nearest neighbors

---

|             |                           |
|-------------|---------------------------|
| textanomaly | <i>Text anomaly score</i> |
|-------------|---------------------------|

---

### Description

Text anomaly detection method adapted from (Zhang et al. 2015).

### Usage

```
textanomaly(dat, k, tops, theta)
```

### Arguments

|       |                                                                        |
|-------|------------------------------------------------------------------------|
| dat   | A datafram with text data, one text per row                            |
| k     | An integer representing number of nearest neighbors                    |
| tops  | An integer representing how many of shared nearest neighbors to return |
| theta | Numeric threshold                                                      |

### Value

Dataframe of local outlier score

### References

Zhang L, Lin J, Karim R (2015). “An angle-based subspace anomaly detection approach to high-dimensional data: With an application to industrial fault detection.” *Reliability Engineering & System Safety*, **142**, 482–497. ISSN 0951-8320, [doi:10.1016/j.ress.2015.05.025](https://doi.org/10.1016/j.ress.2015.05.025).

---

|              |                                          |
|--------------|------------------------------------------|
| text_datagen | <i>Generate text data via Python LLM</i> |
|--------------|------------------------------------------|

---

### Description

All prompt components and example texts are provided by the user as function arguments. This function generates text data based on severity score from a given questionnaire.

### Usage

```
text_datagen(
  prompts,
  examples,
  scenario = NULL,
  overall_rules = NULL,
  percentile_scaffold = NULL,
  item_rules = NULL,
```

```

  items = NULL,
  structure_rules = NULL,
  percentile_specification = NULL,
  band_specification = NULL,
  example_instruction = NULL,
  what_to_write = NULL,
  task_desc = NULL,
  target_min = 90L,
  target_max = 100L,
  temperature = 0.4,
  top_p = 0.9,
  repetition_penalty = 1.1,
  model_name = "meta-llama/Meta-Llama-3-8B-Instruct",
  batch_size = 2L,
  python = Sys.getenv("RETICULATE_PYTHON", "python"),
  env = NULL,
  output_file = NULL
)

```

## Arguments

|                                       |                                                                                                                        |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| <code>prompts</code>                  | A data.frame with one row per diary to generate. Must contain at least a column indicating severity level.             |
| <code>examples</code>                 | A data.frame of example diary texts with columns: text or character column and any grouping severity variable column). |
| <code>scenario</code>                 | Character string used in the SCENARIO section. This describes the situation in which the data is being collected.      |
| <code>overall_rules</code>            | Character string describing global writing rules.                                                                      |
| <code>percentile_scaffold</code>      | Character string describing how percentiles map onto severity.                                                         |
| <code>item_rules</code>               | Character string describing how to internally choose symptom patterns.                                                 |
| <code>items</code>                    | Character string of the battery under study.                                                                           |
| <code>structure_rules</code>          | Character string describing structural rules (paragraphs, length, etc.).                                               |
| <code>percentile_specification</code> | Character string describing what the severity percentile means.                                                        |
| <code>band_specification</code>       | Character string describing severity bands, that is, what you expect each band of severity to look like in text.       |
| <code>example_instruction</code>      | Character string introducing the example texts.                                                                        |
| <code>what_to_write</code>            | Character string describing what the model should write about.                                                         |
| <code>task_desc</code>                | Character string for the system-level role description.                                                                |
| <code>target_min</code>               | Integer minimum number of tokens to generate.                                                                          |
| <code>target_max</code>               | Integer maximum number of tokens to generate.                                                                          |

|                    |                                                                                                                                                                                                                                              |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| temperature        | Numeric temperature for sampling.                                                                                                                                                                                                            |
| top_p              | Numeric top-p nucleus sampling value.                                                                                                                                                                                                        |
| repetition_penalty | Numeric repetition penalty.                                                                                                                                                                                                                  |
| model_name         | Model identifier string to pass to transformers (e.g., "meta-llama/Meta-Llama-3-8B-Instruct", a local path, etc.).                                                                                                                           |
| batch_size         | Integer, passed through to the Python script (not heavily used yet).                                                                                                                                                                         |
| python             | Path to the Python executable. Defaults to Sys.getenv("RETICULATE PYTHON", "python").                                                                                                                                                        |
| env                | Optional named character vector or list of environment variables to set for the duration of the call (e.g., c(HUGGINGFACE_HUB_TOKEN = "xxx", OPENAI_API_KEY = "yyy")). Any variables set here are restored to their previous values on exit. |
| output_file        | Optional path to save the output CSV. If NULL, a temporary file is used and only the data.frame is returned.                                                                                                                                 |

### Value

A data.frame with columns id, severity, and response. @examples prompts <- data.frame( id = 1:2, severity = c(10, 80), num\_examples = c(1, 1) ) examples <- data.frame( text = c("Example A", "Example B"), label = c("group1", "group2"), stringsAsFactors = FALSE ) out <- text\_datagen( prompts = prompts, examples = examples, scenario = "This is an EMA study on depression", overall\_rules = "Write 100 tokens of a diary entry collected every 6 hours.", percentile\_scaffold = "The 90th percentile corresponds with severe depression and the 10th percentile corresponds with mild depression", item\_rules = "For the 90th percentile, you should write as though you scored a 3 on all items", items = "Insert full battery here.", structure\_rules = "Short paragraph.", percentile\_specification = "Test specification.", band\_specification = "Test bands.", example\_instruction = "Here are examples.", what\_to\_write = "Write no less than 100 tokens and no more than 200 tokens", task\_desc = "You are a participant in an EMA study on depression scoring in the 90th percentile of X battery.", target\_min = 10, target\_max = 20, temperature = 0.9, top\_p = 0.9, repetition\_penalty = 1.0, model\_name = "sshleifer/tiny-gpt2", env = NULL # No token needed )

---

|            |                                                      |
|------------|------------------------------------------------------|
| vector_SNN | <i>Aggregate dataframe into mean feature vectors</i> |
|------------|------------------------------------------------------|

---

### Description

For each row of the SNN index matrix, this function takes the rows of reference dataframe, z, and computes their column means, yielding one mean vector per observation.

### Usage

```
vector_SNN(z, snn)
```

**Arguments**

|     |                                               |
|-----|-----------------------------------------------|
| z   | Numeric dataframe                             |
| snn | Dataframe of shared nearest neighbors indices |

**Value**

Dataframe of same dimensions as z

---

|         |                           |
|---------|---------------------------|
| z_score | <i>Z-score on columns</i> |
|---------|---------------------------|

---

**Description**

Z-score on columns

**Usage**

`z_score(dat)`

**Arguments**

|     |                                |
|-----|--------------------------------|
| dat | A dataframe with numeric cells |
|-----|--------------------------------|

**Value**

A dataframe with numeric cells with the same dimensions as dat

# Index

embed, 2

G\_thres, 3

normahalo, 3

pCOS, 4

pCOS\_row, 4

rep\_set, 5

sim\_SNN, 5

text\_datagen, 6

textanomaly, 6

vector\_SNN, 8

z\_score, 9