Package ‘MFF’

February 13, 2026

Type Package
Title Meta Fuzzy Functions

Version 0.1.0

Description Implements Meta Fuzzy Functions (MFFs) for regres-
sion Tak and Ucan (2026) <doi:10.1016/j.as0c.2026.114592> by aggregating predic-
tions from multiple base learners using membership weights learned in the predic-
tion space of validation set. The package supports fuzzy and crisp meta-ensemble struc-
tures via Fuzzy C-Means (FCM) Tak (2018) <doi:10.1016/j.as0c.2018.08.009>, Possibilis-
tic FCM (PFCM) Tak (2021) <doi:10.1016/j.ins.2021.01.024>, and k-means, and pro-
vides a workflow to (i) generate validation/test prediction matrices from common regres-
sion learners (linear and penalized regression via 'glmnet', random forests, gradient boost-
ing with 'xgboost' and 'lightgbm’), (ii) fit cluster-wise meta fuzzy functions and compute mem-
bership-based weights, (iii) tune clustering-related hyperparameters (number of clus-
ters/functions, fuzziness exponent, possibilistic regularization) via grid search on valida-
tion loss, and (iv) predict on new/test prediction matrices and evaluate performance using stan-
dard regression metrics (MAE, RMSE, MAPE, SMAPE, MSE, MedAE). This enables flexi-
ble, interpretable ensemble regression where different base models contribute to differ-
ent meta components according to learned memberships.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

Imports glmnet, randomForest, xgboost, lightgbm, e1071, ppclust
Suggests knitr, rmarkdown, MASS

NeedsCompilation no

Author Nihat Tak [aut, cre],
Sadik Coban [aut]

Maintainer Nihat Tak <nihattak@gmail.com>
Repository CRAN
Date/Publication 2026-02-13 16:20:29 UTC

https://doi.org/10.1016/j.asoc.2026.114592
https://doi.org/10.1016/j.asoc.2018.08.009
https://doi.org/10.1016/j.ins.2021.01.024

2 MFF-package

Contents
MFF-package e e 2
evaluate e e 3
mif . . e 4
modeltrain e e e e e e e e 6
predictmff. L e 8
tunemff 10

Index 12

MFF-package MFF: Meta-Fuzzy Functions
Description

Implements Meta Fuzzy Functions (MFFs) for regression by aggregating predictions from multiple
base models using fuzzy clustering—derived weights. The package allows users to fit MFF mod-
els on top of diverse regression learners, including linear and penalized regression models, random
forests, and gradient boosting methods. Membership weights are obtained via Fuzzy C-Means, Pos-
sibilistic FCM, or k-means, enabling both fuzzy and crisp ensemble structures. Clustering-related
hyperparameters—such as the number of meta fuzzy functions, fuzziness exponent, and possibilis-
tic regularization parameter—can be systematically tuned using validation data. A dedicated predict
method is provided for producing test-set predictions from fitted or tuned MFF objects, along with
evaluation tools for performance assessment.

Details

Provides tools for fitting and evaluating Meta Fuzzy Regression Functions by aggregating heteroge-
neous base regression models through fuzzy membership functions learned in the prediction space,
with support for hyperparameter tuning and standard regression performance measures.

Available Functions
mff() Fits Meta Fuzzy Regression Functions models by estimating fuzzy membership weights
from base-model prediction matrices and constructing cluster-wise meta regression functions.

tune.mff () Performs hyperparameter optimization for MFF models via grid search over clustering-
related parameters, selecting the configuration that minimizes a chosen validation error metric.

predict.mff() S3 prediction method for fitted or tuned MFF objects, generating test-set predic-
tions using membership-weighted aggregation of base-model outputs.

evaluate() Convenience function for training multiple regression models and producing valida-
tion and test prediction matrices suitable for MFF modeling.

model.train() Computes regression performance metrics (e.g., MAE, RMSE, MAPE, SMAPE,
MSE, MedAE) for comparing meta fuzzy functions and base-model predictions.

Author(s)
Maintainer: Nihat Tak Authors: Nihat Tak, Sadik Coban

evaluate 3

References

Data Source for examples:

Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer,
New York. ISBN 0-387-95457-0. (Provides the Boston dataset via the MASS package).

evaluate Compute error metrics for predicted values or prediction matrices

Description

Compute error metrics for predicted values or prediction matrices by comparing them with the
corresponding true response values.

Usage

evaluate(predicted, actual)

Arguments
predicted numeric vector or numeric matrix of predictions. If matrix, columns are evalu-
ated separately.
actual numeric vector of true target values.
Details

The evaluate function is used to quantify the predictive performance of meta fuzzy function predic-
tions by comparing them with the corresponding true response values. It supports both vector- and
matrix-valued prediction inputs, allowing performance assessment of a single meta fuzzy function
as well as simultaneous evaluation of multiple meta fuzzy functions. When a prediction vector is
provided, the function computes a single set of performance metrics; when a prediction matrix is
provided, metrics are computed separately for each meta fuzzy function.

Value
A data frame with columns MAE, RMSE, MAPE, SMAPE, MSE, and MedAE, with one row per
evaluated prediction vector.

See Also

mff for generating predictions, model. train for preparing base model prediction matrices, tune . mff
for hyperparameter tuning performance.

4 miff

Examples

x <- seq(100)

y <- 2*x + stats::rnorm(100)
m <- stats::1m(y ~ x)

pred <- stats::predict(m)
evaluate(pred, y)

mff Generate Meta-Fuzzy Function

Description

Construct meta-fuzzy functions by computing membership weights and cluster-wise predictions.

Usage

mff(
X,
Yy,
¢,
m = NULL,
eta = NULL,
iter.max = 1000,
nstart = 100,
method = c("fcm”, "pfcm”, "kmeans")

)

Arguments

X A numeric matrix of base-model predictions.

y A numeric vector of true response values.

c An integer specifying the number of clusters (functions).

m A numeric fuzziness exponent (typically m = 2) used in FCM-type membership
estimation. Larger values increase fuzziness (more diffuse memberships), while
values closer to 1 yield sharper assignments.

eta numeric regularization parameter used by the possibilistic FCM method (method
- prcmll).

iter.max An integer specifying the maximum number of iterations allowed for the clus-
tering algorithm.

nstart n integer controlling the number of random initializations used when method =
"kmeans" to improve robustness of the final clustering solution

method A character string selecting the membership-generation method. Available op-

non

tions are "fcm", "pfcm", and "kmeans".

mif

Details

The mff function is the core constructor of the Meta Fuzzy Function (MFF) framework. It takes a
matrix of base-model predictions and derives a membership-weight structure that defines multiple
meta fuzzy functions using a selected membership-generation method. In the MFF setting, each
base learner is represented by its prediction vector across samples; therefore, mff internally trans-
poses the prediction matrix so that base models are treated as observations in the meta-clustering
space. The resulting membership matrix is then used to form meta fuzzy function predictions
through weighted aggregation of base-model outputs.

The function supports four membership-generation methods: classical Fuzzy C-Means (FCM), pos-
sibilistic FCM (PFCM) producing softmax-like weights, and deterministic k-means converted to
pseudo- fuzzy memberships. After membership estimation, meta fuzzy function predictions are
computed via linear combinations of base-model predictions and the learned membership- based
weights, and the predictive performance of each meta fuzzy function is assessed using evaluate.
Membership weights are standardized column-wise to ensure that the total contribution of base
models within each meta fuzzy function sums to one, facilitating interpretation and comparison
across meta fuzzy functions.

Value

A list containing:

* method: The clustering method used for membership estimation.
* weights: A column-standardized membership (weight) matrix.
* cluster_preds: A numeric matrix of meta fuzzy functions’ predictions.

* cluster_scores: A data frame of evaluation metrics computed for each cluster(function).

References

Tak, N. (2018). Meta fuzzy functions: Application of recurrent type-1 fuzzy functions. Applied
Soft Computing, 73, 1-13. doi:10.1016/j.as0c.2018.08.009

Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm.
Computers & Geosciences, 10(2), 191-203. doi:10.1016/00983004(84)900207

Cebeci, Z. (2019). Comparison of internal validity indices for fuzzy clustering. Journal of Agricul-
tural Informatics, 10(2), 1-14. doi:10.17700/jai.2019.10.2.537

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2024). el071: Misc Func-
tions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R
package version 1.7-16. https://CRAN.R-project.org/package=e1071

Pal, N.R., Pal, K., Keller, J. M., & Bezdek, J. C. (2005). A possibilistic fuzzy c-means clustering al-
gorithm. /EEE Transactions on Fuzzy Systems, 13(4), 517-530. doi:10.1109/TFUZZ.2004.840099

See Also

model. train for preparing input matrices, predict.mff for test set predictions, tune.mff for
hyperparameter optimization, evaluate for performance metrics.

https://doi.org/10.1016/j.asoc.2018.08.009
https://doi.org/10.1016/0098-3004%2884%2990020-7
https://doi.org/10.17700/jai.2019.10.2.537
https://CRAN.R-project.org/package=e1071
https://doi.org/10.1109/TFUZZ.2004.840099

6 model.train

Examples

result_train <- model.train(

target = "medv”,
data = MASS: :Boston,
ntest = 50,
nvalid = 50,
seed = 123
)
mff_model <- mff(result_train$pred_matrix_valid, result_train$y_valid, c = 4,
iter.max=100,nstart = 100,method = "kmeans")
mff_model
model.train Train Multiple Regression and Produce Model Predictions
Description

Train multiple base learners and generate prediction matrices for use in the Meta Fuzzy Function
framework.

Usage

model.train(target, data, ntest, nvalid, seed = 123)

Arguments

target character string specifying the name of the response variable in the data frame.
This variable is excluded from the predictor set and used as the ground truth for
training and evaluation.

data A data frame containing the predictor variables and the target variable. All
columns except target are treated as predictors.

ntest An integer indicating the number of observations allocated to the test set. This
sub- set is completely held out from model training and validation and is used
for final performance assessment.

nvalid An integer specifying the number of observations assigned to the validation set.

Predic- tions on this subset are used to construct Meta Fuzzy Functions and to
tune clustering-related hyperparameters.

seed An integer used to set the random seed for reproducibility.

model.train 7

Details

Splits data into train/validation/test, then fits a suite of base learners and generates predictions for
validation and test. Predictions are returned as matrices with dimension N.,; X M. These matrices
are the standard input x for mff () and tune.mff ().

Base learners include linear regression, Lasso, Ridge, Elastic Net, Random Forest, XGBoost, and
LightGBM, as implemented by the package dependencies.

If a selected method requires hyperparameter optimization, this optimization is not performed
within the model. train function. Instead, all hyperparameters are fixed a priori using commonly
accepted default values.

Training base models is not a mandatory step to use the MFF framework. The model. train func-
tion is provided as a convenience utility only. Users may independently train any number of predic-
tion methods using external workflows or software and directly supply their predictions as inputs to
the MFF.

Accordingly, the model. train function can be completely skipped while still fully utilizing the
MFF framework with precomputed model outputs.

Value
A list containing:
e pred_matrix_valid: A numeric matrix of validation-set predictions, where each column
corresponds to a base model.

e pred_matrix_test: A numeric matrix of test-set predictions generated by the same base
models.

* y_valid: A numeric vector of true response values for the validation set.

e y_test: A numeric vector of true response values for the test set.

References

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. doi:10.1023/A:1010933404324

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
785-794. doi:10.1145/2939672.2939785

Chen, T., He, T., Benesty, M., et al. (2025). xgboost: Extreme Gradient Boosting. R package
version 3.1.2.1. https://CRAN.R-project.org/package=xgboost

Ke, G., Meng, Q., Finley, T., et al. (2017). LightGBM: A highly efficient gradient boosting deci-
sion tree. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, 3149-3157.

Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. R News, 2(3),
18-22. https://CRAN.R-project.org/doc/Rnews/

Shi, Y., Ke, G., Soukhavong, D., et al. (2025). lightgbm: Light Gradient Boosting Machine. R
package version 4.6.0. https://CRAN.R-project.org/package=1lightgbm

Tay, J. K., Narasimhan, B., & Hastie, T. (2023). Elastic Net Regularization Paths for All General-
ized Linear Models. Journal of Statistical Software, 106(1), 1-31. doi:10.18637/jss.v106.101

https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.1145/2939672.2939785
https://CRAN.R-project.org/package=xgboost
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/package=lightgbm
https://doi.org/10.18637/jss.v106.i01

8 predict.mff

See Also

mff for the main framework application, tune.mff for hyperparameter optimization,

Examples

boston <- MASS::Boston
result <- model.train(

target = "medv”,
data = boston,
ntest = 50,
nvalid = 50,
seed = 123

)

head(result$pred_matrix_valid)
head(result$pred_matrix_test)

predict.mff Predict method for objects of class mff

Description

The predict method for objects of class mff is used to generate predictions from the Meta Fuzzy
Function framework on the test dataset.

Usage
S3 method for class 'mff’
predict(object, pred_matrix, type = c("best”, "all"), ...)
Arguments
object an object of class mff (returned by mff() or tune.mff()).
pred_matrix numeric matrix (N;s¢ X M) of base predictions for the new data (e.g., test set).
type "best’ uses the optimal configuration/cluster selected by tune.mff(); *all’ returns

outputs for all tuned configurations.

further arguments passed to or from other methods.

Details

In this setting, the input to predict is the matrix of test-set predictions produced by the base models
that were trained in the earlier stage using model.train.

Let X;oor € RNtestXM denote the prediction matrix of M trained base models on the test dataset,
where N4 is the number of test observations. Each column of X, corresponds to the predic-
tions generated by a single base learner. Using the membership-based weight matrix W = [w,y,.]
obtained during validation, meta fuzzy function predictions on the test set are computed as

predict.mff 9

M
?g\cf)FF,test = Z w(m)((.)gzggz)f (11)
m=1

where gt(;zl denotes the test-set prediction vector produced by base model m, and ¢ = 1,...,C
indexes the meta fuzzy functions.
The predict function supports two prediction modes, controlled by the type argument:
* type = "best" returns predictions obtained from the single meta fuzzy function that achieved
the optimal validation performance during training or tuning (see Eq. 9).
e type = "all" returns predictions from all meta fuzzy functions, allowing users to examine
alternative predictive components within the MFF model.

When type = "best" is selected, the final prediction for test observation ¢ is given by

M
?i,final = Z w(m)(c*)ggz)st (12)

m=1
where ¢* denotes the index of the best-performing meta fuzzy function selected based on validation
performance.

Computes cluster-wise predictions via membership-weighted aggregation of base-model predic-
tions. For inspection and reporting purposes, a rounded copy of the membership weights (four
decimal places) is returned.

If a single best-performing cluster is defined via tune.mff, the corresponding weight vector is also
returned.

Value

* mff_preds: A numeric matrix of meta fuzzy function predictions on the test set. When "best",
this matrix reduces to a single column.

* mff_weights: The membership based weight matrix. If a single meta fuzzy function is se-
lected, the corresponding weight vector is returned.

See Also

mff, tune.mff, evaluate

Examples

res <- model.train(target="medv", data=MASS::Boston, ntest=50, nvalid=50, seed = 123)
fit <- tune.mff(res$pred_matrix_valid, res$y_valid, max_c=6, mff.method="kmeans")
out <- predict(fit, pred_matrix=res$pred_matrix_test, type="best")
head(out$mff_preds)

out$mff_weights

10

tune.mff

tune.mff

Hyperparameter Search for Meta-Fuzzy Function

Description

The tune.mff function performs hyperparameter optimization via grid search for Meta Fuzzy Func-
tions (MFFs) by searching over clustering-related parameter combinations and selecting the config-
uration that yields the lowest validation error.

Usage
tune.mff(
X,
Y,
max_c,

m_seq = seq(1.1, 3, by = 0.1),
eta_seq = seq(1.1, 3, by = 0.4),

iter.max

1000,

nstart = 100,

seed = 123,

mff.method = c("fcm”, "pfcm”, "kmeans"),

eval.method = c(”MAE”, "RMSE”, "MAPE”, "SMAPE”, "MSE”, "MedAE"),

logging = TRUE

Arguments

X

max_c

m_seq

eta_seq

iter.max

nstart

seed

mff.method

A numeric matrix of base-model predictions with dimensions Ny.s; X M. Each
column corresponds to a base learner.

numeric vector of validation targets. This vector is used to evaluate meta fuzzy
function predictions.

An integer specifying the maximum number of clusters to be considered in the
search.

A numeric vector of candidate values for the fuzziness exponent m used in FCM-
type methods.

A numeric vector of candidate values for the probabilistic regularization param-
eter 1 used when mff.method = "pfcm".

An integer specifying the maximum number of iterations allowed for the clus-
tering algorithm within each grid evaluation..

integer; An integer controlling the number of random initializations for k-means
when mff.method = "kmeans".

An integer used to set the random seed for reproducibility during weight com-
putation and parameter search.

A character string selecting the membership-generation method.

tune.mff 11

eval.method A character string specifying the metric used to select the best-performing meta
fuzzy function.
logging A logical flag indicating whether progress information is printed during the
search.
Details

Given a matrix of base-model predictions and the corresponding validation targets, fune.mff re-
peatedly calls mff to compute membership weights, generate meta fuzzy function predictions, and
evaluate these predictions using a user-specified metric. The best configuration is determined by the
minimum value of the selected evaluation metric among the scores obtained from the meta fuzzy
function predictions produced under each candidate setting.

The search space depends on the selected membership-generation method. For classical Fuzzy C-
Means ("fcm"), the function explores combinations of the number of clusters ¢ and the fuzziness
index m. For possibilistic FCM ("pfcm"), the grid additionally includes the possibilistic regular-
ization parameter 7. For k-means ("kmeans"), the search is performed only over the number of
clusters(c). The function returns the best-performing configuration together with the corresponding
weight structure, the index of the best-performing meta fuzzy function, and the full set of evaluation
results, enabling transparent reporting and reproducible model selection.

Value

* algorithm: The selected membership-generation method.

* eval.method: The evaluation metric used in model selection.

* weights: The membership (weight) matrix associated with the best-performing configuration.
* best_params: A list containing the hyperparameters that achieved the best score.

* best_cluster: The index of the meta fuzzy function yielding the minimum validation error.
* best_weight: The weight vector corresponding to the best-performing meta fuzzy function.

* best_scores: The full set of evaluation scores for all meta fuzzy function predictions under
the best configuration.

See Also

mff, model.train, predict.mff

Examples

res <- model.train(target="medv", data=MASS::Boston, ntest=50, nvalid=50, seed = 123)
fit <- tune.mff(res$pred_matrix_valid, res$y_valid, max_c=6, mff.method="kmeans")
out <- predict(fit, pred_matrix=res$pred_matrix_test, type="best")
head(out$mff_preds)

out$mff_weights

Index

evaluate, 3, 5, 9

MFF (MFF-package), 2
mff, 3,4,8, 9,11
MFF-package, 2
model.train, 3, 5,6, 11
predict.mff, 5,8, 11

tune.mff, 3, 5,8 9, 10

12

	MFF-package
	evaluate
	mff
	model.train
	predict.mff
	tune.mff
	Index

