Package ‘MetaRVYM’

January 9, 2026

Title Meta-Population Compartmental Model for Respiratory Virus
Diseases

Version 1.0.1

Description Simulates respiratory virus epidemics using meta-population compartmental models fol-
lowing Fadikar et. al. (2025) <doi:10.1101/2025.05.05.25327021>. MetaRVM' imple-
ments a stochastic
SEIRD (Susceptible-Exposed-Infected-Recovered-Dead) framework with demographic
stratification by age, race, and geographic zones. It supports complex
epidemiological scenarios including asymptomatic and presymptomatic transmission,
hospitalization dynamics, vaccination schedules, and time-varying contact patterns
via mixing matrices.

URL https://RESUME-Epi.github.io/MetaRVM/,

https://github.com/RESUME-Epi/MetaRVM

BugReports https://github.com/RESUME-Epi/MetaRVM/issues
License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>=3.5.0)

Imports data.table, dplyr, ggplot2, magrittr, methods, odin, purrr,
R6, tidyr, yaml

Suggests dde, knitr, pkgdown, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr, rmarkdown

Config/testthat/edition 3

NeedsCompilation no

Author Arindam Fadikar [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-7396-0350>),
Charles Macal [ctb],
Martinez Moyano Ignacio Javier [ctb],
Ozik Jonathan [ctb]
Maintainer Arindam Fadikar <afadikar@anl.gov>
Repository CRAN

Date/Publication 2026-01-09 17:40:02 UTC

https://doi.org/10.1101/2025.05.05.25327021
https://RESUME-Epi.github.io/MetaRVM/
https://github.com/RESUME-Epi/MetaRVM
https://github.com/RESUME-Epi/MetaRVM/issues
https://orcid.org/0000-0001-7396-0350

format_metarvm_output

Contents

format_metarvm_output
metaRVM e
MetaRVMCheck e e e
MetaRVMConfig e
MetaRVMResults e e e e e
MetaRVMSummary L
MEtA_SIM . . . o v o o o e e e e e e e e
parse_config L. e e e e

Index

format_metarvm_output Format MetaRVM simulation output

Description

This function formats raw MetaRVM simulation output by:

1. Converting time steps to calendar dates
2. Adding demographic attributes from population mapping
3. Handling different disease states appropriately:

* Regular states (S, E, I, etc.): Keep values at integer time points

* New count states (n_ prefix): Sum pairs to get daily counts

Usage

format_metarvm_output(sim_output, config)

Arguments
sim_output data.table containing raw simulation output from meta_sim
config MetaRVMConfig object or config list containing parameters
Value

data.table with formatted output including calendar dates and demographics

Note

This function is used for formatting the meta_sim output when MetaRVM function is called.

metaRVM 3

metaRVM Run a MetaRVM epidemic simulation

Description

metaRVM() is the high-level entry point for running a MetaRVM metapopulation respiratory virus
simulation. It parses the configuration, runs one or more simulation instances (deterministic or
stochastic), formats the ODIN/MetaRVM output into a tidy long table with calendar dates and
demographic attributes, and returns a MetaRVMResults object for downstream analysis and plotting.

Usage

metaRVM(config_input)

Arguments

config_input Configuration specification in one of three forms:

* Character string: path to a YAML configuration file.
* MetaRVMConfig object: pre-initialized configuration.
¢ Named list: output from parse_config() with return_object = FALSE.

Details

The configuration input controls:

* Population structure (e.g., age, race, zone)

* Disease parameters (ts, tv, ve, de, dp, da, ds, dh, dr, pea, psr, phr, dv, etc.)

* Mixing matrices (weekday/weekend, day/night contact patterns)

* Vaccination schedule and immunity waning

» Simulation settings (start date, length, number of instances, stochastic vs. deterministic
mode, checkpointing)

Internally, metaRVM():

1. Parses the YAML configuration via parse_config().
2. Calls the ODIN-based simulation engine meta_sim() for each instance.

3. Uses format_metarvm_output() to convert time steps to dates and attach demographic at-
tributes.

4. Wraps the formatted output and metadata in a MetaRVMResults object that supports method
chaining for subsetting, summarizing, and plotting.

4 metaRVM

Value

A MetaRVMResults R6 object with three key components:
$results A tidy data.table with one row per date—subpopulation—disease state—instance combi-
nation. Typical columns include:
¢ date: calendar date (Date)
* age, race, zone: demographic categories (if present in the population mapping)

* disease_state: compartment or flow label (e.g., S, E, I_symp, H, R, D, n_SE, n_IsympH,
etc.)

 value: population count or daily flow
e instance: simulation instance index (1, 2, ...)

$config The MetaRVMConfig object used for the run.

$run_info A list with metadata such as n_instances, date_range, delta_t, and checkpoint in-
formation.
Author(s)

Arindam Fadikar, Charles Macal, Ignacio Martinez-Moyano, Jonathan Ozik

References
Fadikar, A., et al. "Developing and deploying a use-inspired metapopulation modeling framework
for detailed tracking of stratified health outcomes"
See Also
parse_config() for reading YAML configurations, MetaRVMConfig for configuration manage-
ment, MetaRVMResults for analysis and plotting, meta_sim() for the low-level simulation engine.
Examples

options(odin.verbose = FALSE)
example_config <- system.file("extdata”, "example_config.yaml”,
package = "MetaRVM")

Run a single-instance simulation from a YAML file
results <- metaRVM(example_config)

Print a high-level summary
results

Access the tidy results table
head(results$results)

Summarize and plot hospitalizations and deaths by age and race

results$summarize(
group_by = c("age", "race"),
disease_states = c("H", "D"),
stats = c("median”, "quantile”),

MetaRVMCheck 5

quantiles = c(0.25, 0.75)
Y$plot()

Using a pre-parsed configuration object
cfg <- parse_config(example_config, return_object = TRUE)
results2 <- metaRVM(cfg)

MetaRVMCheck MetaRVM Checkpoint Class

Description

R6 class to handle MetaRVM checkpoint data. This class is a simplified version of MetaRVMConfig
tailored for storing and accessing simulation checkpoints.

Details

The MetaRVMCheck class is designed to hold the state of a simulation at a specific time point,
allowing for continuation or analysis. It stores all necessary parameters and population states.

Super class

MetaRVM: :MetaRVMConfig -> MetaRVMCheck

Public fields

check_data List containing all parsed checkpoint data

Methods

Public methods:
¢ MetaRVMCheck$new()
¢ MetaRVMCheck$clone()

Method new(): Initialize a new MetaRVMCheck object

Usage:
MetaRVMCheck$new(input)

Arguments:
input A list containing checkpoint data.

Returns: A new MetaRVMCheck object.

Method clone(): The objects of this class are cloneable with this method.
Usage:
MetaRVMCheck$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

Author(s)

Arindam Fadikar

MetaRVMConfig

MetaRVMConfig MetaRVM Configuration Class

Description

R6 class to handle MetaRVM configuration data with validation and methods. This class encapsu-
lates all configuration parameters needed for MetaRVM simulations, providing methods for param-
eter access, validation, and introspection.

Details

The MetaRVMConlfig class stores parsed configuration data from YAML files and provides struc-
tured access to simulation parameters. It automatically validates configuration completeness and
provides convenient methods for accessing demographic categories, population mappings, and other
simulation settings.

Public fields

config_file Path to the original YAML config file (if applicable)

config_data List containing all parsed configuration parameters

Methods

Public methods:

MetaRVMConfig$new()
MetaRVMConfig$get ()
MetaRVMConfig$get_all()
MetaRVMConfig$list_parameters()
MetaRVMConfig$parameter_summary()
MetaRVMConfig$set ()
MetaRVMConfig$print ()
MetaRVMConfig$get_pop_map()
MetaRVMConfig$get_age_categories()
MetaRVMConfig$get_race_categories()
MetaRVMConfig$get_zones()
MetaRVMConfig$clone()

Method new(): Initialize a new MetaRVMConfig object

Usage:
MetaRVMConfig$new(input)

Arguments:

MetaRVMConfig

input Either a file path (character) or parsed config list
Returns: New MetaRVMConfig object (invisible)

Method get(): Get a configuration parameter

Usage:
MetaRVMConfig$get (param)

Arguments:

param Parameter name

Returns: The requested parameter value

Method get_all(): Get all configuration parameters as a list

Usage:
MetaRVMConfig$get_all()

Returns: Named list of all configuration parameters

Method list_parameters(): List all available parameter names

Usage:
MetaRVMConfig$list_parameters()

Returns: Character vector of parameter names

Method parameter_summary(): Show summary of parameter types and sizes

Usage:
MetaRVMConfig$parameter_summary ()

Returns: Data frame with parameter information

Method set(): Seta configuration parameter

Usage:
MetaRVMConfig$set(param, value)

Arguments:
param Character string. Parameter name to set
value The value to assign to the parameter

Returns: Self (invisible) for method chaining

Method print(): Print summary of configuration

Usage:
MetaRVMConfig$print()

Returns: Self (invisible)

Method get_pop_map(): Get population mapping data

Usage:
MetaRVMConfig$get_pop_map()

Returns: data.table containing population mapping with demographic categories

8 MetaRVMConfig

Method get_age_categories(): Get available age categories

Usage:
MetaRVMConfig$get_age_categories()

Returns: Character vector of unique age categories, or NULL if no population mapping avail-
able

Method get_race_categories(): Get available race categories

Usage:
MetaRVMConfig$get_race_categories()

Returns: Character vector of unique race categories, or NULL if no population mapping avail-
able

Method get_zones(): Get available zones

Usage:
MetaRVMConfig$get_zones()

Returns: Character vector of unique zone identifiers, or NULL if no population mapping avail-
able

Method clone(): The objects of this class are cloneable with this method.

Usage:
MetaRVMConfig$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)
Arindam Fadikar

Examples

Initialize from YAML file
example_config <- system.file("extdata"”, "example_config.yaml”, package = "MetaRVM")
config <- MetaRVMConfig$new(example_config)

Access parameters
config$get ("N_pop")
config$get("start_date"”)

Get demographic categories

ages <- config$get_age_categories()
races <- config$get_race_categories()
zones <- config$get_zones()

MetaRVMResults 9

MetaRVMResults MetaRVM Results Class

Description

R6 class to handle MetaRVM simulation results with comprehensive analysis and visualization
methods. This class stores formatted simulation results and provides methods for data summariza-
tion, subsetting, and visualization with flexible demographic groupings.

Details

The MetaRVMResults class automatically formats raw simulation output upon initialization, con-
verting time steps to calendar dates and adding demographic attributes. It provides methods for
flexible data summarization across any combination of age, race, and geographic zone categories,
plus method chaining for streamlined analysis workflows.

Public fields

config MetaRVMConfig object used to generate these results
results data.table containing formatted simulation results

run_info List containing run metadata

Methods

Public methods:

¢ MetaRVMResults$new()

¢ MetaRVMResults$print()

* MetaRVMResults$subset_data()
e MetaRVMResults$summarize()

* MetaRVMResults$clone()

Method new(): Initialize a new MetaRVMResults object

Usage:
MetaRVMResults$new(
raw_results,
config,
run_info = NULL,
formatted_results = NULL
)
Arguments:
raw_results Raw simulation results data.table
config MetaRVMConfig object used for the simulation
run_info Optional metadata about the run
formatted_results formatted simulation results data.table

MetaRVMResults

Returns: New MetaRVMResults object (invisible)

Method print(): Print summary of results
Usage:
MetaRVMResults$print()

Returns: Self (invisible)

Method subset_data(): Subset the data based on any combination of parameters

Usage:
MetaRVMResults$subset_data(
ages = NULL,
races = NULL,
zones = NULL,

disease_states = NULL,
date_range = NULL,
instances = NULL,
exclude_p_columns = TRUE

)

Arguments:

ages Vector of age categories to include (default: all)

races Vector of race categories to include (default: all)

zones Vector of zones to include (default: all)

disease_states Vector of disease states to include (default: all, excludes p_ columns)
date_range Vector of two dates start_date, and end_date for filtering (default: all)
instances Vector of instance numbers to include (default: all)

exclude_p_columns Logical, whether to exclude p_ columns (default: TRUE)

Returns: MetaRVMResults object with subset of results

Method summarize(): Summarize results across specified demographic characteristics
Usage:
MetaRVMResults$summarize(
group_by,
disease_states = NULL,
date_range = NULL,
stats = c("mean”, "median”, "sd"),
quantiles = c(0.25, 0.75),
exclude_p_columns = TRUE

)

Arguments:

non non

group_by Vector of demographic variables to group by: c("age", "race", "zone"
disease_states Vector of disease states to include (default: all, excludes p_ columns)
date_range Optional date range for filtering

stats Vector of statistics to calculate: c("mean", "median", "sd", "min", "max", "sum", "quan-
tile"). If NULL, returns all instances

MetaRVMSummary 11

quantiles Vector of quantiles to calculate if "quantile" is in stats (default: c(0.25, 0.75))
exclude_p_columns Logical, whether to exclude p_ columns (default: TRUE)

Returns: data.table with summarized time series data or all instances if stats = NULL

Method clone(): The objects of this class are cloneable with this method.
Usage:
MetaRVMResults$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Author(s)
Arindam Fadikar

Examples

options(odin.verbose = FALSE)

example_config <- system.file("extdata”, "example_config.yaml”, package = "MetaRVM")
Run simulation

results_obj <- metaRVM(example_config)

Access formatted results

head(results_obj$results)

Subset data with multiple filters
subset_data <- results_obj$subset_data(
age = c("18-49", "50-64"),

disease_state = c("H", "D"),
date_range = c(as.Date("2024-01-01"), as.Date("2024-02-01"))
)
Method chaining for analysis and visualization
results_obj$subset_data(disease_state = "H")$summarize(
group_by = c("age", "race"),
stats = c(”"median”, "quantile"),
quantiles = c(0.25, 0.75)
)$plot()
MetaRVMSummary MetaRVM Summary Class
Description

R6 class for summarized MetaRVM results with plotting capabilities and method chaining support.
This class stores summarized simulation data and provides visualization methods that automatically
adapt based on the data structure and grouping variables.

12 MetaRVMSummary

Details

The MetaRVMSummary class is designed to work seamlessly with method chaining from MetaRVM-
Results. It stores either summary statistics (mean, median, quantiles, etc.) or individual instance
data, and provides intelligent plotting methods that automatically determine appropriate visualiza-
tions based on the data structure and demographic groupings.

The class supports two data types:

* Summary data: Contains aggregated statistics across simulation instances

 Instance data: Contains individual trajectory data for each simulation instance
Plotting behavior adapts automatically:

* Single grouping variable: Facets by demographic category, colors by disease state
» Two grouping variables: Grid layout with both demographics as facet dimensions

» Three grouping variables: Grid layout with first two as facets, third as color

Public Fields

data data.table containing summarized results
config MetaRVMConfig object from original simulation

type Character string indicating data type ("summary" or "instances")

Public fields

data Summarized data
config Original MetaRVMConfig object

type Type of summary ("instances" or "summary")

Methods

Public methods:
* MetaRVMSummary$new()
¢ MetaRVMSummary$print()
* MetaRVMSummary$plot()
¢ MetaRVMSummary$clone()

Method new(): Initialize MetaRVMSummary object
Usage:
MetaRVMSummary$new(data, config, type)
Arguments:
data data.table containing summarized or instance data
config MetaRVMConfig object from original simulation
type Character string indicating data type ("summary" or "instances")

Returns: New MetaRVMSummary object (invisible)

MetaRVMSummary 13

Method print(): Print summary of the data object

Usage:
MetaRVMSummary$print()

Returns: Self (invisible)

Method plot(): Plot method that shows median with quantile bands

Usage:
MetaRVMSummary$plot(ci_level = 0.95, theme = theme_minimal(), title = NULL)
Arguments:
ci_level Confidence level for empirical quantiles (default: 0.95). Only used if quantile columns
are not pre-specified
theme ggplot2 theme function (default: theme_minimal())
title Optional custom plot title
Details: This method creates time series plots with automatic layout adaptation based on group-
ing variables:
* For summary data: Shows median lines with quantile confidence bands
* Automatically determines faceting strategy based on number of grouping variables
 Uses disease states for color differentiation when appropriate
The method requires specific data structure:
e Summary data must contain "'median_value’ and quantile columns (e.g., ’q25°, ’q75’)
* Instance data must contain ’instance’ column for individual trajectory grouping

Returns: ggplot object

Method clone(): The objects of this class are cloneable with this method.

Usage:
MetaRVMSummary$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)
Arindam Fadikar

Examples

options(odin.verbose = FALSE)

example_config <- system.file("extdata”, "example_config_dist.yaml”, package = "MetaRVM")
Run simulation

results <- metaRVM(example_config)

Typically created through method chaining

summary_obj <- results$subset_data(disease_state = "H")$summarize(
group_by = c("age", "race"),
stats = c(”"median”, "quantile"),

quantiles = c(0.25, 0.75)
)

14 meta_sim

Direct plotting
summary_obj$plot()

Plot with custom ggplot theme and confidence level
summary_obj$plot(theme = ggplot2::theme_bw())

meta_sim Metapopulation Respiratory Virus Model Simulator

Description

The core simulation engine that implements a stochastic compartmental SEIRD (Susceptible-Exposed-
Infected-Recovered-Dead) model for respiratory virus epidemics across multiple demographic sub-
populations. The function compiles and executes an ODIN-based differential equation model with
time-varying contact patterns, vaccination dynamics, and complex disease progression pathways.

Usage

meta_sim(
N_pop,
ts,
tv,
s,
1o,
Po,
RO,
HO = rep(@, N_pop),
DO = rep(@, N_pop),
Ia0@ = rep(@, N_pop),
Ipo = rep(@, N_pop),
EQ = rep(@, N_pop),
VO = rep(@, N_pop),
m_weekday_day,
m_weekday_night,
m_weekend_day,
m_weekend_night,
start_day = 0,
delta_t,
vac_mat,
dv,
de,
pea,
dp,
da,
ds,

meta_sim

psr,
dh,
phr,
dr,

ve,
nsteps,

15

is.stoch = FALSE,

seed = NULL,

do_chk = FALSE,
chk_time_steps = NULL,
chk_file_names = NULL

Arguments

N_pop
ts

tv

S0

I0

Po
RO

HO

Do

Ia0

Ipo

E0

U

m_weekday_day

m_weekday_night

Integer. Number of demographic subpopulations in the model

Numeric vector or scalar. Transmission rate for symptomatic individuals in sus-
ceptible population. If scalar, applied to all subpopulations

Numeric vector or scalar. Transmission rate for symptomatic individuals in vac-
cinated population. If scalar, applied to all subpopulations

Numeric vector of length N_pop. Initial number of susceptible individuals in
each subpopulation

Numeric vector of length N_pop. Initial number of symptomatic infected indi-
viduals in each subpopulation

Numeric vector of length N_pop. Total population sizes for each subpopulation

Numeric vector of length N_pop. Initial number of recovered individuals in each
subpopulation

Numeric vector of length N_pop. Initial number of hospitalized individuals in
each subpopulation (default: rep(0, N_pop))

Numeric vector of length N_pop. Initial number of deceased individuals in each
subpopulation (default: rep(0, N_pop))

Numeric vector of length N_pop. Initial number of asymptomatic infected indi-
viduals in each subpopulation (default: rep(0, N_pop))

Numeric vector of length N_pop. Initial number of presymptomatic infected
individuals in each subpopulation (default: rep(0, N_pop))

Numeric vector of length N_pop. Initial number of exposed individuals in each
subpopulation (default: rep(0, N_pop))

Numeric vector of length N_pop. Initial number of vaccinated individuals in
each subpopulation

Numeric matrix (N_pop x N_pop). Contact mixing matrix for weekday daytime
(6 AM - 6 PM) interactions

Numeric matrix (N_pop x N_pop). Contact mixing matrix for weekday night-
time (6 PM - 6 AM) interactions

16

meta_sim

m_weekend_day Numeric matrix (N_pop x N_pop). Contact mixing matrix for weekend daytime
(6 AM - 6 PM) interactions

m_weekend_night
Numeric matrix (N_pop x N_pop). Contact mixing matrix for weekend night-
time (6 PM - 6 AM) interactions

start_day Start day of the week expressed as an integer value between 0 and 6, 0 being
Monday. Default simulation start day is Monday.

delta_t Positive numeric. Discrete time increment in days (typically 0.5)

vac_mat Numeric matrix. Vaccination schedule with dimensions (nsteps x (1 + N_pop)).
First column contains time indices, remaining columns contain vaccination counts
for each subpopulation at each time step

dv Numeric vector or scalar. Mean duration (days) in vaccinated state before im-
munity waning. If scalar, applied to all subpopulations

de Numeric vector or scalar. Mean duration (days) in exposed state. If scalar,
applied to all subpopulations

pea Numeric vector or scalar. Proportion of exposed individuals becoming asymp-
tomatic infectious (vs. presymptomatic), values between O and 1. If scalar,
applied to all subpopulations. If scalar, applied to all subpopulations

dp Numeric vector or scalar. Mean duration (days) in presymptomatic infectious
state. If scalar, applied to all subpopulations

da Numeric vector or scalar. Mean duration (days) in asymptomatic infectious
state. If scalar, applied to all subpopulations

ds Numeric vector or scalar. Mean duration (days) in symptomatic infectious state.
If scalar, applied to all subpopulations

psr Numeric vector or scalar. Proportion of symptomatic individuals recovering
directly (vs. hospitalization), values between 0 and 1. If scalar, applied to all
subpopulations. If scalar, applied to all subpopulations

dh Numeric vector or scalar. Mean duration (days) in hospitalized state. If scalar,
applied to all subpopulations

phr Numeric vector or scalar. Proportion of hospitalized individuals recovering (vs.
death). , values between 0 and 1. If scalar, applied to all subpopulations.

dr Numeric vector or scalar. Mean duration (days) of immunity in recovered state.
If scalar, applied to all subpopulations

ve Numeric vector or scalar. Vaccine effectiveness (proportion) , values between 0
and 1. If scalar, applied to all subpopulations

nsteps Integer. Total number of discrete time evolution steps in simulation

is.stoch Logical. Whether to run stochastic simulation (TRUE) or deterministic simula-
tion (FALSE). Default: FALSE

seed Integer or NULL. Random seed for reproducibility. Only used when is.stoch =
TRUE. Default: NULL

do_chk Logical. Whether to save model checkpoint at simulation end. Default: FALSE

chk_time_steps Integer vector or NULL. Time steps at which to save checkpoints.

chk_file_names List of character vectors or NULL. File names for checkpoints. Each element of
the list corresponds to a time step in chk_time_steps.

meta_sim 17

Details

The model implements a metapopulation epidemiological framework with the following features:

Compartmental Structure:

* S: Susceptible individuals

* E: Exposed (incubating) individuals

* I_presymp: Presymptomatic infectious individuals
* I_asymp: Asymptomatic infectious individuals

* I_symp: Symptomatic infectious individuals

* H: Hospitalized individuals

* R: Recovered individuals

* D: Deceased individuals

¢ V: Vaccinated individuals

P: Total living population (excludes deaths)
Disease Progression Pathways:

. S — E: Exposure through contact with infectious individuals

. E — I_asymp/I_presymp: Progression to infectious states (proportion pea)
. I_presymp — I_symp: Development of symptoms

. I_asymp — R: Direct recovery from asymptomatic state

. I_symp — R/H: Recovery or hospitalization (proportion psr)

H — R/D: Hospital discharge or death (proportion phr)

R — S: Loss of immunity

S — V: Vaccination

O 0 NN L A W N~

. 'V = S/E: Vaccine waning or breakthrough infection
Mixing Patterns: Contact patterns vary by:

* Day of week: Weekday vs. weekend patterns
* Time of day: Day (6 AM - 6 PM) vs. night (6 PM - 6 AM) patterns
 Each pattern specified by N_pop x N_pop contact matrix

Force of Infection: Transmission occurs through contact between susceptible/vaccinated individu-
als and all infectious compartments (I_presymp + I_asymp + [_symp), modified by:

 Population-specific transmission rates (ts, tv)
* Time-varying contact patterns

* Vaccine effectiveness for breakthrough infections
Stochastic vs. Deterministic Mode:

* Deterministic: Uses exact differential equations

* Stochastic: Adds demographic stochasticity via binomial draws

18 meta_sim

Vaccination Implementation: Vaccination is implemented as time-varying input with:

* Scheduled vaccination counts per time step and subpopulation
* Vaccine effectiveness reducing infection probability

* Waning immunity returning individuals to susceptible state

Value
Returns a data.table with the following structure:
step Integer time step index (O to nsteps)
time Continuous simulation time (step x delta_t)
disease_state Character vector of compartment names
population_id Character vector of subpopulation identifiers

value Numeric values representing population counts in each compartment
Available disease states in output:

* Core compartments: S, E, I_presymp, I_asymp, [_symp, H, R, D, V, P
* Derived outputs: I_all (total infectious), cuam_V (cumulative vaccinations)
* Transition flows: n_SE, n_EI, n_HR, n_HD, etc. (new infections, hospitalizations, deaths)

* Debug outputs: p_SE, p_VE, I_eff (probabilities and effective populations)

Parameter Scaling

All duration parameters are automatically converted to rates (1/duration). Scalar parameters are au-
tomatically expanded to vectors of length N_pop. This allows flexible specification of homogeneous
or heterogeneous parameters.

Checkpointing
When do_chk = TRUE, the function saves a checkpoint file containing:
* Final compartment states for simulation continuation
* All model parameters for reproducibility

¢ Vaccination schedule data

* Population structure information

Author(s)

Arindam Fadikar, Charles Macal, Ignacio Martinez-Moyano, Jonathan Ozik

References

* ODIN package: https://mrc-ide.github.io/odin/

 Fadikar, A., et al. "Developing and deploying a use-inspired metapopulation modeling frame-
work for detailed tracking of stratified health outcomes"

https://mrc-ide.github.io/odin/

meta_sim 19

See Also

metaRVM for high-level simulation interface with configuration files parse_config for configura-
tion file processing format_metarvm_output for output formatting with demographics

Examples

options(odin.verbose = FALSE)

Basic deterministic simulation
N_pop <- 2

nsteps <- 400

Initialize populations
SO <- rep(1000, N_pop)
10 <- rep(10, N_pop)

PO <- S@ + I0

RO <- rep(@, N_pop)

Contact matrices (simplified - identity matrices)
contact_matrix <- diag(N_pop)

Basic vaccination schedule (10% vaccination)

vac_mat <- matrix(@, nrow = nsteps + 1, ncol = N_pop + 1)
vac_mat[, 1] <- @:nsteps

vac_mat[1, 1 + (1:N_pop)] <- PO * 0.1

Run simulation
results <- meta_sim(
N_pop = N_pop,

ts = 0.5,
tv = 0.1,
S0 = S0,
10 = I9,
PO = PO,
RO = RO,

m_weekday_day = contact_matrix,
m_weekday_night = contact_matrix,
m_weekend_day = contact_matrix,
m_weekend_night = contact_matrix,
delta_t = 0.5,

vac_mat = vac_mat,

dv = 365,
de = 3,
pea = 0.3,
dp = 2,

da =7,

ds =7,
psr = 0.95,
dh = 10,
phr = 0.9,
dr = 180,
ve = 0.8,

nsteps = nsteps,

20 parse_config

is.stoch = FALSE

parse_config Parse MetaRVM Configuration File

Description

Reads and parses a YAML configuration file for MetaRVM simulations, extracting all necessary
parameters for epidemic modeling including population data, disease parameters, mixing matrices,
vaccination schedules, and simulation settings.

Usage

parse_config(config_file, return_object = FALSE)

Arguments

config_file Character string. Path to a YAML configuration file containing model parame-
ters and settings.

return_object Logical. If TRUE, returns a MetaRVMConfig object for method chaining and
enhanced functionality. If FALSE (default), returns a named list for backward
compatibility.

Details

The function processes a YAML configuration file with the following main sections:
Simulation Configuration:
* random_seed: Optional random seed for reproducibility in case of stochastic simulations or
stochastic parameters
e nsim: Number of simulation instances (default: 1)
* start_date: Simulation start date in MM/DD/YYYY format
* length: Simulation length in days
* checkpoint_dir: Optional checkpoint directory for saving intermediate results
* checkpoint_dates: Optional list of dates to save checkpoints.

* restore_from: Optional path to restore simulation from checkpoint
Population Data:

* mapping: CSV file path containing population mapping with demographic categories age,
race, zone. The file must contains columns population_id, age, race, zone, where the
population_id is defined using natural numbers.

parse_config 21

e initialization: CSV file with initial population states. The file must contains columns
population_id, N, S0, 10, V0o, RO.

* vaccination: CSV file with vaccination schedule over time. The first column must be dates
in MM/DD/YYYY format. The rest of the columns must corresponds to respective subpopu-
lations in the numeric order of population_id.

Mixing Matrices: Contact matrices for different time periods. Each CSV file must have a matrix
of order (N_pop x N_pop), where, N_pop is the number of subpopulations. It is assumed that the

i-th row and j-th column correspond to i-th and j-th subpopulations.

* weekday_day, weekday_night: Weekday contact patterns

* weekend_day, weekend_night: Weekend contact patterns
Disease Parameters: Epidemiological parameters (can be scalars or distributions):

* ts: Transmission rate for symptomatic individuals

* tv: Transmission rate for vaccinated individuals

 ve: Vaccine effectiveness

* de, dp, da, ds, dh, dr: Duration parameters for different disease states

* pea, psr, phr: Probability parameters for disease transitions
Sub-population Parameters: sub_disease_params allows specification of different parameter
values for specific demographic categories (e.g., age groups, races).

The function supports stochastic parameters through distribution specifications with dist, mu, sd,
shape, rate, etc.

Value
If return_object = FALSE (default), returns a named list containing:

N_pop Number of population groups
pop_map Data.table with population mapping and demographics

S_ini, E_ini, I_asymp_ini, I_presymp_ini, I_symp_ini, H_ini, D_ini, P_ini, V_ini, R_ini Initial
compartment populations

vac_time_id, vac_counts, vac_mat Vaccination schedule data

m_wd_d, m_wd_n, m_we_d, m_we_n Contact mixing matrices

ts, tv, ve, dv, de, dp, da, ds, dh, dr, pea, psr, phr Disease parameter matrices (nsim x N_pop)
start_date Simulation start date as Date object

sim_length Simulation length in days

nsim Number of simulation instances

random_seed Random seed used (if any)

delta_t Time step size (fixed at 0.5)

chk_file_names, chk_time_steps, do_chk Checkpointing configuration

If return_object = TRUE, returns a MetaRVMConfig object with methods for parameter access and
validation.

22 parse_config

Parameter Distributions
Disease parameters can be specified as distributions for stochastic modeling:

* lognormal: dist: "lognormal”, mu: value, sd: value
e gamma: dist: "gamma”, shape: value, rate: value
e uniform: dist: "uniform”, min: value, max: value
e beta: dist: "beta”, shapel: value, shape2: value
e gaussian: dist: "gaussian”, mean: value, sd: value

File Requirements
Population mapping file must contain columns:
* population_id: Unique identifier for each population group, natural numbers
* age: Age category (e.g., "0-4", "5-11", "12-17", "18-49", "50-64", "65+")
* race: Race/ethnicity category
* zone: Geographic zone identifier
Population initialization file must contain: N (total population), S0, 19, V@, R@ (initial compartment
counts)

Vaccination file must contain: date (MM/DD/YYYY format) and vaccination counts for each
population group

Author(s)
Arindam Fadikar

See Also

metaRVM for running simulations with parsed configuration MetaRVMConfig for the configuration
object class process_vac_data for vaccination data processing

Examples

options(odin.verbose = FALSE)

example_config <- system.file("extdata”, "example_config.yaml”, package = "MetaRVM")
Parse configuration file and return list (backward compatible)

config <- parse_config(example_config)

Parse and return MetaRVMConfig object for method chaining
config_obj <- parse_config(example_config, return_object = TRUE)

Access parameters from config object
config_obj$get("N_pop")
config_obj$list_parameters()

Use with MetaRVM simulation
results <- metaRVM(config_obj)

Index

format_metarvm_output, 2, /9
format_metarvm_output(), 3

meta_sim, 2, 14
meta_sim(), 3, 4

MetaRVM, 2
metaRVWM, 3, 19, 22

MetaRVM: :MetaRVMConfig, 5
MetaRVMCheck, 5
MetaRVMConfig, 3-5, 6, 22
MetaRVMResults, 3, 4,9
MetaRVMSummary, 11

parse_config, 19, 20
parse_config(), 3, 4
process_vac_data, 22

23

	format_metarvm_output
	metaRVM
	MetaRVMCheck
	MetaRVMConfig
	MetaRVMResults
	MetaRVMSummary
	meta_sim
	parse_config
	Index

