OptimalBinningWoE: Optimal Binning and Weight of Evidence Framework for Modeling
High-performance implementation of 36 optimal binning algorithms
(16 categorical, 20 numerical) for Weight of Evidence ('WoE') transformation,
credit scoring, and risk modeling. Includes advanced methods such as Mixed
Integer Linear Programming ('MILP'), Genetic Algorithms, Simulated Annealing,
and Monotonic Regression. Features automatic method selection based on
Information Value ('IV') maximization, strict monotonicity enforcement, and
efficient handling of large datasets via 'Rcpp'. Fully integrated with the
'tidymodels' ecosystem for building robust machine learning pipelines.
Based on methods described in Siddiqi (2006) <doi:10.1002/9781119201731>
and Navas-Palencia (2020) <doi:10.48550/arXiv.2001.08025>.
| Version: |
1.0.3 |
| Depends: |
R (≥ 4.1.0) |
| Imports: |
Rcpp, recipes, rlang, tibble, dials |
| LinkingTo: |
Rcpp, RcppEigen, RcppNumerical |
| Suggests: |
testthat (≥ 3.0.0), dplyr, generics, knitr, rmarkdown, tidymodels, workflows, parsnip, pROC, scorecard |
| Published: |
2026-01-23 |
| DOI: |
10.32614/CRAN.package.OptimalBinningWoE (may not be active yet) |
| Author: |
José Evandeilton Lopes
[aut, cre,
cph] |
| Maintainer: |
José Evandeilton Lopes <evandeilton at gmail.com> |
| BugReports: |
https://github.com/evandeilton/OptimalBinningWoE/issues |
| License: |
MIT + file LICENSE |
| URL: |
https://github.com/evandeilton/OptimalBinningWoE |
| NeedsCompilation: |
yes |
| SystemRequirements: |
C++17 |
| Language: |
en-US |
| Materials: |
README, NEWS |
| CRAN checks: |
OptimalBinningWoE results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=OptimalBinningWoE
to link to this page.