
Package ‘RTMBdist’
January 13, 2026

Type Package

Title Distributions Compatible with Automatic Differentiation by
'RTMB'

Version 1.0.0

Description
Extends the functionality of the 'RTMB' <https://kaskr.r-universe.dev/RTMB> pack-
age by providing a collection of non-standard probability distributions compatible with auto-
matic differentiation (AD). While 'RTMB' enables flexible and efficient modelling, includ-
ing random effects, its built-in support is limited to standard distributions. The package adds ad-
ditional AD-compatible distributions, broadening the range of models that can be imple-
mented and estimated using 'RTMB'. Automatic differentiation and Laplace approxima-
tion are described in Kristensen et al. (2016) <doi:10.18637/jss.v070.i05>.

License MIT + file LICENSE

Encoding UTF-8

Imports stats, gamlss.dist, circular, sn, statmod, movMF

Depends R (>= 3.5.0), RTMB (>= 1.7.0)

RoxygenNote 7.3.3

Suggests knitr, rmarkdown, testthat (>= 3.0.0), LaMa (>= 2.0.6),
Matrix, TMB, gamlss.data, mvtnorm

Config/testthat/edition 3

URL https://janoleko.github.io/RTMBdist/

VignetteBuilder knitr

NeedsCompilation no

Author Jan-Ole Koslik [aut, cre] (ORCID:
<https://orcid.org/0009-0004-1556-9053>)

Maintainer Jan-Ole Koslik <jan-ole.koslik@uni-bielefeld.de>

Repository CRAN

Date/Publication 2026-01-13 11:50:17 UTC

1

https://kaskr.r-universe.dev/RTMB
https://doi.org/10.18637/jss.v070.i05
https://janoleko.github.io/RTMBdist/
https://orcid.org/0009-0004-1556-9053

2 Contents

Contents
abs_smooth . 3
bccg . 4
bcpe . 5
bct . 6
beta2 . 7
betabinom . 8
cclayton . 9
cfrank . 10
cgaussian . 11
cgmrf . 12
cgumbel . 13
cmvgauss . 14
dcopula . 15
ddcopula . 16
dirichlet . 17
dirmult . 18
dmvcopula . 19
erf . 20
exgauss . 21
foldnorm . 22
gamma2 . 23
genpois . 24
gumbel . 25
invgauss . 26
laplace . 27
mvt . 28
nbinom2 . 29
oibeta . 30
oibeta2 . 31
pareto . 32
pgweibull . 33
powerexp . 34
skewnorm . 36
skewnorm2 . 37
skewt . 38
skewt2 . 39
t2 . 41
truncnorm . 42
trunct . 43
trunct2 . 44
vm . 45
vmf . 46
vmf2 . 47
wishart . 48
wrpcauchy . 48
zero_inflate . 49

abs_smooth 3

zibeta . 50
zibeta2 . 51
zibinom . 52
zigamma . 53
zigamma2 . 54
ziinvgauss . 55
zilnorm . 56
zinbinom . 57
zinbinom2 . 58
zipois . 59
zoibeta . 60
zoibeta2 . 61
ztbinom . 62
ztnbinom . 63
ztnbinom2 . 64
ztpois . 65

Index 67

abs_smooth Smooth approximation to the absolute value function

Description

Smooth approximation to the absolute value function

Usage

abs_smooth(x, epsilon = 1e-06)

Arguments

x vector of evaluation points

epsilon smoothing constant

Details

We approximate the absolute value here as

|x| ≈
√
x2 + ϵ

Value

Smooth absolute value of x.

Examples

abs(0)
abs_smooth(0, 1e-4)

4 bccg

bccg Box–Cox Cole and Green distribution (BCCG)

Description

Density, distribution function, quantile function, and random generation for the Box–Cox Cole and
Green distribution.

Usage

dbccg(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE)

pbccg(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)

qbccg(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)

rbccg(n, mu = 1, sigma = 0.1, nu = 1)

Arguments

x, q vector of quantiles

mu location parameter, must be positive.

sigma scale parameter, must be positive.

nu skewness parameter (real).

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise P [X > x].

p vector of probabilities

n number of random values to return

Details

This implementation of dbccg and pbccg allows for automatic differentiation with RTMB while
the other functions are imported from gamlss.dist package. See gamlss.dist::BCCG for more
details.

Value

dbccg gives the density, pbccg gives the distribution function, qbccg gives the quantile function,
and rbccg generates random deviates.

References

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for mod-
eling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547.
An older version can be found in https://www.gamlss.com/.

bcpe 5

Examples

x <- rbccg(5, mu = 10, sigma = 0.2, nu = 0.5)
d <- dbccg(x, mu = 10, sigma = 0.2, nu = 0.5)
p <- pbccg(x, mu = 10, sigma = 0.2, nu = 0.5)
q <- qbccg(p, mu = 10, sigma = 0.2, nu = 0.5)

bcpe Box-Cox Power Exponential distribution (BCPE)

Description

Density, distribution function, quantile function, and random generation for the Box-Cox Power
Exponential distribution.

Usage

dbcpe(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE)

pbcpe(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)

qbcpe(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)

rbcpe(n, mu = 5, sigma = 0.1, nu = 1, tau = 2)

Arguments

x, q vector of quantiles

mu location parameter, must be positive.

sigma scale parameter, must be positive.

nu vector of nu parameter values.

tau vector of tau parameter values, must be positive.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise P [X > x].

p vector of probabilities

n number of random values to return

Details

This implementation of dbcpe and pbcpe allows for automatic differentiation with RTMB while
the other functions are imported from gamlss.dist package. See gamlss.dist::BCPE for more
details.

Value

dbcpe gives the density, pbcpe gives the distribution function, qbcpe gives the quantile function,
and rbcpe generates random deviates.

6 bct

References

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for mod-
eling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547.
An older version can be found in https://www.gamlss.com/.

Examples

x <- rbcpe(1, mu = 5, sigma = 0.1, nu = 1, tau = 1)
d <- dbcpe(x, mu = 5, sigma = 0.1, nu = 1, tau = 1)
p <- pbcpe(x, mu = 5, sigma = 0.1, nu = 1, tau = 1)
q <- qbcpe(p, mu = 5, sigma = 0.1, nu = 1, tau = 1)

bct Box–Cox t distribution (BCT)

Description

Density, distribution function, quantile function, and random generation for the Box–Cox t distri-
bution.

Usage

dbct(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE)

pbct(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)

qbct(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)

rbct(n, mu = 5, sigma = 0.1, nu = 1, tau = 2)

Arguments

x, q vector of quantiles

mu location parameter, must be positive.

sigma scale parameter, must be positive.

nu skewness parameter (real).

tau degrees of freedom, must be positive.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise P [X > x].

p vector of probabilities

n number of random values to return

Details

This implementation of dbct and pbct allows for automatic differentiation with RTMB while the
other functions are imported from gamlss.dist package. See gamlss.dist::BCT for more details.

beta2 7

Value

dbct gives the density, pbct gives the distribution function, qbct gives the quantile function, and
rbct generates random deviates.

References

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for mod-
eling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547.
An older version can be found in https://www.gamlss.com/.

Examples

x <- rbct(1, mu = 10, sigma = 0.2, nu = 0.5, tau = 4)
d <- dbct(x, mu = 10, sigma = 0.2, nu = 0.5, tau = 4)
p <- pbct(x, mu = 10, sigma = 0.2, nu = 0.5, tau = 4)
q <- qbct(p, mu = 10, sigma = 0.2, nu = 0.5, tau = 4)

beta2 Reparameterised beta distribution

Description

Density, distribution function, quantile function, and random generation for the beta distribution
reparameterised in terms of mean and concentration.

Usage

dbeta(x, shape1, shape2, log = FALSE, eps = 0)

dbeta2(x, mu, phi, log = FALSE, eps = 0)

pbeta2(q, mu, phi, lower.tail = TRUE, log.p = FALSE)

qbeta2(p, mu, phi, lower.tail = TRUE, log.p = FALSE)

rbeta2(n, mu, phi)

Arguments

x, q vector of quantiles
shape1, shape2 non-negative parameters
log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).
eps for internal use only, don’t change.
mu mean parameter, must be in the interval from 0 to 1.
phi concentration parameter, must be positive.
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise P [X > x].
p vector of probabilities
n number of random values to return.

8 betabinom

Details

This implementation allows for automatic differentiation with RTMB.

Currently, dbeta masks RTMB::dbeta because the latter has a numerically unstable gradient.

Value

dbeta2 gives the density, pbeta2 gives the distribution function, qbeta2 gives the quantile function,
and rbeta2 generates random deviates.

Examples

set.seed(123)
x <- rbeta2(1, 0.5, 1)
d <- dbeta2(x, 0.5, 1)
p <- pbeta2(x, 0.5, 1)
q <- qbeta2(p, 0.5, 1)

betabinom Beta-binomial distribution

Description

Density and random generation for the beta-binomial distribution.

Usage

dbetabinom(x, size, shape1, shape2, log = FALSE)

rbetabinom(n, size, shape1, shape2)

Arguments

x vector of non-negative counts.

size vector of total counts (number of trials). Needs to be >= x.

shape1 positive shape parameter 1 of the Beta prior.

shape2 positive shape parameter 2 of the Beta prior.

log logical; if TRUE, densities are returned on the log scale.

n number of random values to return (for rbetabinom).

Details

This implementation of dbetabinom allows for automatic differentiation with RTMB.

Value

dbetabinom gives the density and rbetabinom generates random samples.

cclayton 9

Examples

set.seed(123)
x <- rbetabinom(1, 10, 2, 5)
d <- dbetabinom(x, 10, 2, 5)

cclayton Clayton copula constructors

Description

Construct a function that computes the log density or CDF of the bivariate Clayton copula, intended
to be used with dcopula.

Usage

cclayton(theta)

Cclayton(theta)

Arguments

theta Positive dependence parameter (θ > 0).

Details

The Clayton copula density is

c(u, v; θ) = (1 + θ)(uv)−(1+θ)
(
u−θ + v−θ − 1

)−(2θ+1)/θ
, θ > 0.

Value

A function of two arguments (u,v) returning log copula density (cclayton) or copula CDF (Cclayton).

See Also

cgaussian(), cgumbel(), cfrank()

Examples

x <- c(0.5, 1); y <- c(0.2, 0.8)
d1 <- dnorm(x, 1, log = TRUE); d2 <- dbeta(y, 2, 1, log = TRUE)
p1 <- pnorm(x, 1); p2 <- pbeta(y, 2, 1)
dcopula(d1, d2, p1, p2, copula = cclayton(2), log = TRUE)

CDF version (for discrete copulas)
Cclayton(1.5)(0.5, 0.4)

10 cfrank

cfrank Frank copula constructor

Description

Returns a function computing the log density of the bivariate Frank copula, intended to be used with
dcopula.

Usage

cfrank(theta)

Cfrank(theta)

Arguments

theta Dependence parameter (θ ̸= 0).

Details

The Frank copula density is

c(u, v; θ) =
θ(1− e−θ)e−θ(u+v)

[(e−θu − 1)(e−θv − 1) + (1− e−θ)]
2 , θ ̸= 0.

Value

A function of two arguments (u, v) returning either the log copula density (cfrank) or the copula
CDF (Cfrank).

See Also

cgaussian(), cclayton(), cgumbel()

Examples

x <- c(0.5, 1); y <- c(1, 2)
d1 <- dnorm(x, 1, log = TRUE); d2 <- dexp(y, 2, log = TRUE)
p1 <- pnorm(x, 1); p2 <- pexp(y, 2)
dcopula(d1, d2, p1, p2, copula = cfrank(2), log = TRUE)

cgaussian 11

cgaussian Gaussian copula constructor

Description

Returns a function computing the log density of the bivariate Gaussian copula, intended to be used
with dcopula.

Usage

cgaussian(rho = 0)

Arguments

rho Correlation parameter (−1 < rho < 1).

Value

Function of two arguments (u,v) returning log copula density.

The Gaussian copula density is

c(u, v; ρ) =
1√

1− ρ2
exp

{
− 1

2(1− ρ2)
(z21 − 2ρz1z2 + z22) +

1

2
(z21 + z22)

}
,

where z1 = Φ−1(u), z2 = Φ−1(v), and −1 < ρ < 1.

See Also

cclayton(), cgumbel(), cfrank()

Examples

x <- c(0.5, 1); y <- c(1, 2)
d1 <- dnorm(x, 1, log = TRUE); d2 <- dexp(y, 2, log = TRUE)
p1 <- pnorm(x, 1); p2 <- pexp(y, 2)
dcopula(d1, d2, p1, p2, copula = cgaussian(0.5), log = TRUE)

12 cgmrf

cgmrf Multivariate Gaussian copula constructor parameterised by inverse
correlation matrix

Description

Returns a function computing the log density of the multivariate Gaussian copula, parameterised by
the inverse correlation matrix.

Usage

cgmrf(Q)

Arguments

Q Inverse of a positive definite correlation matrix with unit diagonal. Can either
be sparse or dense matrix.

Details

Caution: Parameterising the inverse correlation directly is difficult, as inverting it needs to yield
a positive definite matrix with unit diagonal. Hence we still advise parameterising the correaltion
matrix R and computing its inverse. This function is useful when you need access to the precision
(i.e. inverse correlation) in your likelihood function.

Value

Function with matrix argument U returning log copula density.

See Also

cmvgauss()

Examples

x <- c(0.5, 1); y <- c(1, 2); z <- c(0.2, 0.8)
d1 <- dnorm(x, 1, log = TRUE); d2 <- dexp(y, 2, log = TRUE); d3 <- dbeta(z, 2, 1, log = TRUE)
p1 <- pnorm(x, 1); p2 <- pexp(y, 2); p3 <- pbeta(z, 2, 1)
R <- matrix(c(1,0.5,0.3,0.5,1,0.4,0.3,0.4,1), nrow = 3)

Based on correlation matrix
dmvcopula(cbind(d1, d2, d3), cbind(p1, p2, p3), copula = cmvgauss(R), log = TRUE)

Based on precision matrix
Q <- solve(R)
dmvcopula(cbind(d1, d2, d3), cbind(p1, p2, p3), copula = cgmrf(Q), log = TRUE)

Parameterisation inside a model
using RTMB::unstructured to get a valid correlation matrix

cgumbel 13

library(RTMB)
d <- 5 # dimension
cor_func <- unstructured(d)
npar <- length(cor_func$parms())
R <- cor_func$corr(rep(0.1, npar))

cgumbel Gumbel copula constructors

Description

Construct functions that compute either the log density or the CDF of the bivariate Gumbel copula,
intended for use with dcopula.

Usage

cgumbel(theta)

Cgumbel(theta)

Arguments

theta Dependence parameter (θ >= 1).

Details

The Gumbel copula density

c(u, v; θ) = exp
[
−

(
(− log u)θ + (− log v)θ

)1/θ] · h(u, v; θ),
where h(u, v; θ) contains the derivative terms ensuring the function is a density.

Value

A function of two arguments (u, v) returning either the log copula density (cgumbel) or the copula
CDF (Cgumbel).

See Also

cgaussian(), cclayton(), cfrank()

Examples

x <- c(0.5, 1); y <- c(0.2, 0.4)
d1 <- dnorm(x, 1, log = TRUE); d2 <- dbeta(y, 2, 1, log = TRUE)
p1 <- pnorm(x, 1); p2 <- pbeta(y, 2, 1)
dcopula(d1, d2, p1, p2, copula = cgumbel(1.5), log = TRUE)

CDF version (for discrete copulas)
Cgumbel(1.5)(0.5, 0.4)

14 cmvgauss

cmvgauss Multivariate Gaussian copula constructor

Description

Returns a function computing the log density of the multivariate Gaussian copula, intended to be
used with dmvcopula.

Usage

cmvgauss(R)

Arguments

R Positive definite correlation matrix (unit diagonal)

Value

Function with matrix argument U returning log copula density.

See Also

cgmrf()

Examples

x <- c(0.5, 1); y <- c(1, 2); z <- c(0.2, 0.8)
d1 <- dnorm(x, 1, log = TRUE); d2 <- dexp(y, 2, log = TRUE); d3 <- dbeta(z, 2, 1, log = TRUE)
p1 <- pnorm(x, 1); p2 <- pexp(y, 2); p3 <- pbeta(z, 2, 1)
R <- matrix(c(1,0.5,0.3,0.5,1,0.4,0.3,0.4,1), nrow = 3)

Based on correlation matrix
dmvcopula(cbind(d1, d2, d3), cbind(p1, p2, p3), copula = cmvgauss(R), log = TRUE)

Based on precision matrix
Q <- solve(R)
dmvcopula(cbind(d1, d2, d3), cbind(p1, p2, p3), copula = cgmrf(Q), log = TRUE)

Parameterisation inside a model
using RTMB::unstructured to get a valid correlation matrix
library(RTMB)
d <- 5 # dimension
cor_func <- unstructured(d)
npar <- length(cor_func$parms())
R <- cor_func$corr(rep(0.1, npar))

dcopula 15

dcopula Joint density under a bivariate copula

Description

Computes the joint density (or log-density) of a bivariate distribution constructed from two arbitrary
margins combined with a specified copula.

Usage

dcopula(d1, d2, p1, p2, copula = cgaussian(0), log = FALSE)

Arguments

d1, d2 Marginal density values. If log = TRUE, supply the log-density. If log = FALSE,
supply the raw density.

p1, p2 Marginal CDF values. Need not be supplied on log scale.

copula A function of two arguments (u, v) returning the log copula density log c(u, v).
You can either construct this yourself or use the copula constructors available
(see details)

log Logical; if TRUE, return the log joint density. In this case, d1 and d2 must be on
the log scale.

Details

The joint density is
f(x, y) = c(F1(x), F2(y)) f1(x)f2(y),

where Fi are the marginal CDFs, fi are the marginal densities, and c is the copula density.

The marginal densities d1, d2 and CDFs p1, p2 must be differentiable for automatic differentiation
(AD) to work.

Available copula constructors are:

• cgaussian (Gaussian copula)

• cclayton (Clayton copula)

• cgumbel (Gumbel copula)

• cfrank (Frank copula)

Value

Joint density (or log-density) under the bivariate copula.

See Also

ddcopula(), dmvcopula()

16 ddcopula

Examples

Normal + Exponential margins with Gaussian copula
x <- c(0.5, 1); y <- c(1, 2)
d1 <- dnorm(x, 1, log = TRUE); d2 <- dexp(y, 2, log = TRUE)
p1 <- pnorm(x, 1); p2 <- pexp(y, 2)
dcopula(d1, d2, p1, p2, copula = cgaussian(0.5), log = TRUE)

Normal + Beta margins with Clayton copula
x <- c(0.5, 1); y <- c(0.2, 0.8)
d1 <- dnorm(x, 1, log = TRUE); d2 <- dbeta(y, 2, 1, log = TRUE)
p1 <- pnorm(x, 1); p2 <- pbeta(y, 2, 1)
dcopula(d1, d2, p1, p2, copula = cclayton(2), log = TRUE)

Normal + Beta margins with Gumbel copula
x <- c(0.5, 1); y <- c(0.2, 0.4)
d1 <- dnorm(x, 1, log = TRUE); d2 <- dbeta(y, 2, 1, log = TRUE)
p1 <- pnorm(x, 1); p2 <- pbeta(y, 2, 1)
dcopula(d1, d2, p1, p2, copula = cgumbel(1.5), log = TRUE)

Normal + Exponential margins with Frank copula
x <- c(0.5, 1); y <- c(1, 2)
d1 <- dnorm(x, 1, log = TRUE); d2 <- dexp(y, 2, log = TRUE)
p1 <- pnorm(x, 1); p2 <- pexp(y, 2)
dcopula(d1, d2, p1, p2, copula = cfrank(2), log = TRUE)

ddcopula Joint probability under a discrete bivariate copula

Description

Computes the joint probability mass function of two discrete margins combined with a copula CDF.

Usage

ddcopula(d1, d2, p1, p2, Copula, log = FALSE)

Arguments

d1, d2 Marginal p.m.f. values at the observed points, not on log-scale.

p1, p2 Marginal CDF values at the observed points.

Copula A function of two arguments returning the copula CDF.

log Logical; if TRUE, return the log joint density. In this case, d1 and d2 must be on
the log scale.

dirichlet 17

Details

The joint probability mass function for two discrete margins is

Pr(Y1 = y1, Y2 = y2) = C(F1(y1), F2(y2))−C(F1(y1−1), F2(y2))−C(F1(y1), F2(y2−1))+C(F1(y1−1), F2(y2−1)),

where Fi are the marginal CDFs, and C is the copula CDF.

Available copula CDF constructors are:

• Cclayton (Clayton copula)

• Cgumbel (Gumbel copula)

• Cfrank (Frank copula)

Value

Joint probability (or log-probability) under chosen copula

See Also

dcopula(), dmvcopula()

Examples

x <- c(3,5); y <- c(2,4)
d1 <- dpois(x, 4); d2 <- dpois(y, 3)
p1 <- ppois(x, 4); p2 <- ppois(y, 3)
ddcopula(d1, d2, p1, p2, Copula = Cclayton(2), log = FALSE)

dirichlet Dirichlet distribution

Description

Density and and random generation for the Dirichlet distribution.

Usage

ddirichlet(x, alpha, log = FALSE)

rdirichlet(n, alpha)

Arguments

x vector or matrix of quantiles. If x is a vector, it needs to sum to one. If x is a
matrix, each row should sum to one.

alpha vector or matrix of positive shape parameters

log logical; if TRUE, densities p are returned as log(p).

n number of random values to return.

18 dirmult

Details

This implementation of ddirichlet allows for automatic differentiation with RTMB.

Value

ddirichlet gives the density, rdirichlet generates random deviates.

Examples

single alpha
alpha <- c(1,2,3)
x <- rdirichlet(1, alpha)
d <- ddirichlet(x, alpha)
vectorised over alpha
alpha <- rbind(alpha, 2*alpha)
x <- rdirichlet(2, alpha)

dirmult Dirichlet-multinomial distribution

Description

Density and and random generation for the Dirichlet-multinomial distribution.

Usage

ddirmult(x, size, alpha, log = FALSE)

rdirmult(n, size, alpha)

Arguments

x vector or matrix of non-negative counts, where rows are observations and columns
are categories.

size vector of total counts for each observation. Needs to match the row sums of x.

alpha vector or matrix of positive shape parameters

log logical; if TRUE, densities p are returned as log(p).

n number of random values to return.

Details

This implementation of ddirmult allows for automatic differentiation with RTMB.

Value

ddirmult gives the density and rdirmult generates random samples.

dmvcopula 19

Examples

single alpha
alpha <- c(1,2,3)
size <- 10
x <- rdirmult(1, size, alpha)
d <- ddirmult(x, size, alpha)
vectorised over alpha and size
alpha <- rbind(alpha, 2*alpha)
size <- c(size, 3*size)
x <- rdirmult(2, size, alpha)

dmvcopula Joint density under a multivariate copula

Description

Computes the joint density (or log-density) of a distribution constructed from any number of arbi-
trary margins combined with a specified copula.

Usage

dmvcopula(D, P, copula = cmvgauss(diag(ncol(D))), log = FALSE)

Arguments

D Matrix of marginal density values of with rows corresponding to observations
and columns corresponding to dimensions. If log = TRUE, supply the log-densities.
If log = FALSE, supply the raw densities

P Matrix of marginal CDF values of the same dimension as D. Need not be sup-
plied on log scale.

copula A function of a matrix argument U returning the log copula density log c(u1, ...ud).
The columns of U correspond to dimensions. You can either construct this your-
self or use the copula constructors available (see details)

log Logical; if TRUE, return the log joint density. In this case, D must be on the log
scale.

Details

The joint density is

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd)) f1(x1) . . . fd(xd),

where Fi are the marginal CDFs, fi are the marginal densities, and c is the copula density.

The marginal densities d_1, ..., d_d and CDFs p_1, ..., p_d must be differentiable for auto-
matic differentiation (AD) to work.

Available multivariate copula constructors are:

• cmvgauss (Multivariate Gaussian copula)
• cgmrf (Multivariate Gaussian copula parameterised by precision (inverse correlation) matrix)

20 erf

Value

Joint density (or log-density) under the chosen copula.

See Also

dcopula(), ddcopula()

Examples

x <- c(0.5, 1); y <- c(1, 2); z <- c(0.2, 0.8)
d1 <- dnorm(x, 1, log = TRUE); d2 <- dexp(y, 2, log = TRUE); d3 <- dbeta(z, 2, 1, log = TRUE)
p1 <- pnorm(x, 1); p2 <- pexp(y, 2); p3 <- pbeta(z, 2, 1)
R <- matrix(c(1,0.5,0.3,0.5,1,0.4,0.3,0.4,1), nrow = 3)

Multivariate Gaussian copula
Based on correlation matrix
dmvcopula(cbind(d1, d2, d3), cbind(p1, p2, p3), copula = cmvgauss(R), log = TRUE)

Based on precision matrix
Q <- solve(R)
dmvcopula(cbind(d1, d2, d3), cbind(p1, p2, p3), copula = cgmrf(Q), log = TRUE)

Parameterisation inside a model
using RTMB::unstructured to get a valid correlation matrix
library(RTMB)
d <- 5 # dimension
cor_func <- unstructured(d)
npar <- length(cor_func$parms())
R <- cor_func$corr(rep(0.1, npar))

erf AD-compatible error function and complementary error function

Description

AD-compatible error function and complementary error function

Usage

erf(x)

erfc(x)

Arguments

x vector of evaluation points

Value

erf(x) returns the error function and erfc(x) returns the complementary error function.

exgauss 21

Examples

erf(1)
erfc(1)

exgauss Exponentially modified Gaussian distribution

Description

Density, distribution function, quantile function, and random generation for the exponentially mod-
ified Gaussian distribution.

Usage

dexgauss(x, mu = 0, sigma = 1, lambda = 1, log = FALSE)

pexgauss(q, mu = 0, sigma = 1, lambda = 1, lower.tail = TRUE, log.p = FALSE)

qexgauss(p, mu = 0, sigma = 1, lambda = 1, lower.tail = TRUE, log.p = FALSE)

rexgauss(n, mu = 0, sigma = 1, lambda = 1)

Arguments

x, q vector of quantiles

mu mean parameter of the Gaussian part

sigma standard deviation parameter of the Gaussian part, must be positive.

lambda rate parameter of the exponential part, must be positive.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

p vector of probabilities

n number of random values to return

Details

This implementation of dexgauss and pexgauss allows for automatic differentiation with RTMB.
qexgauss and rexgauss are reparameterised imports from gamlss.dist::exGAUS.

If X ∼ N(µ, σ2) and Y ∼ Exp(λ), then Z = X + Y follows the exponentially modified Gaussian
distribution with parameters µ, σ, and λ.

Value

dexgauss gives the density, pexgauss gives the distribution function, qexgauss gives the quantile
function, and rexgauss generates random deviates.

22 foldnorm

References

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for mod-
eling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547.
An older version can be found in https://www.gamlss.com/.

Examples

x <- rexgauss(1, 1, 2, 2)
d <- dexgauss(x, 1, 2, 2)
p <- pexgauss(x, 1, 2, 2)
q <- qexgauss(p, 1, 2, 2)

foldnorm Folded normal distribution

Description

Density, distribution function, and random generation for the folded normal distribution.

Usage

dfoldnorm(x, mu = 0, sigma = 1, log = FALSE)

pfoldnorm(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)

rfoldnorm(n, mu = 0, sigma = 1)

Arguments

x, q vector of quantiles

mu location parameter

sigma scale parameter, must be positive.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

n number of random values to return

p vector of probabilities

Details

This implementation of dfoldnorm allows for automatic differentiation with RTMB.

Value

dfoldnorm gives the density, pfoldnorm gives the distribution function, and rfoldnorm generates
random deviates.

gamma2 23

Examples

x <- rfoldnorm(1, 1, 2)
d <- dfoldnorm(x, 1, 2)
p <- pfoldnorm(x, 1, 2)

gamma2 Reparameterised gamma distribution

Description

Density, distribution function, quantile function, and random generation for the gamma distribution
reparameterised in terms of mean and standard deviation.

Usage

dgamma2(x, mean = 1, sd = 1, log = FALSE)

pgamma2(q, mean = 1, sd = 1, lower.tail = TRUE, log.p = FALSE)

qgamma2(p, mean = 1, sd = 1, lower.tail = TRUE, log.p = FALSE)

rgamma2(n, mean = 1, sd = 1)

Arguments

x, q vector of quantiles
mean mean parameter, must be positive.
sd standard deviation parameter, must be positive.
log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).
lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].
p vector of probabilities
n number of random values to return.

Details

This implementation allows for automatic differentiation with RTMB.

Value

dgamma2 gives the density, pgamma2 gives the distribution function, qgamma2 gives the quantile
function, and rgamma2 generates random deviates.

Examples

x <- rgamma2(1)
d <- dgamma2(x)
p <- pgamma2(x)
q <- qgamma2(p)

24 genpois

genpois Generalised Poisson distribution

Description

Probability mass function, distribution function, and random generation for the generalised Poisson
distribution.

Usage

dgenpois(x, lambda = 1, phi = 1, log = FALSE)

pgenpois(q, lambda = 1, phi = 1, lower.tail = TRUE, log.p = FALSE)

qgenpois(p, lambda = 1, phi = 1,
lower.tail = TRUE, log.p = FALSE, max.value = 10000)

rgenpois(n, lambda = 1, phi = 1, max.value = 10000)

Arguments

x, q integer vector of counts

lambda vector of positive means

phi vector of non-negative dispersion parameters

log, log.p logical; return log-density if TRUE

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

p vector of probabilities

max.value a constant, set to the default value of 10000 for how far the algorithm should
look for q.

n number of random values to return.

Details

This implementation of dgenpois allows for automatic differentiation with RTMB. The other func-
tions are imported from gamlss.dist::GPO.

The distribution has mean λ and variance λ(1 + ϕλ)2. For ϕ = 0 it reduces to the Poisson distribu-
tion, however ϕ must be strictly positive here.

Value

dgenpois gives the probability mass function, pgenpois gives the distribution function, qgenpois
gives the quantile function, and rgenpois generates random deviates.

gumbel 25

Examples

set.seed(123)
x <- rgenpois(1, 2, 3)
d <- dgenpois(x, 2, 3)
p <- pgenpois(x, 2, 3)
q <- qgenpois(p, 2, 3)

gumbel Gumbel distribution

Description

Density, distribution function, quantile function, and random generation for the Gumbel distribu-
tion.

Usage

dgumbel(x, location = 0, scale = 1, log = FALSE)

pgumbel(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)

qgumbel(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)

rgumbel(n, location = 0, scale = 1)

Arguments

x, q vector of quantiles

location location parameter

scale scale parameter, must be positive.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

p vector of probabilities

n number of random values to return

Details

This implementation of dgumbel allows for automatic differentiation with RTMB.

Value

dgumbel gives the density, pgumbel gives the distribution function, qgumbel gives the quantile
function, and rgumbel generates random deviates.

26 invgauss

Examples

x <- rgumbel(1, 0.5, 2)
d <- dgumbel(x, 0.5, 2)
p <- pgumbel(x, 0.5, 2)
q <- qgumbel(p, 0.5, 2)

invgauss Inverse Gaussian distribution

Description

Density, distribution function, and random generation for the inverse Gaussian distribution.

Usage

dinvgauss(x, mean = 1, shape = 1, log = FALSE)

pinvgauss(q, mean = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)

qinvgauss(p, mean = 1, shape = 1, lower.tail = TRUE, log.p = FALSE, ...)

rinvgauss(n, mean = 1, shape = 1)

Arguments

x, q vector of quantiles, must be positive.

mean location parameter

shape shape parameter, must be positive.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

p vector of probabilities

... additional parameter passed to statmod::qinvgauss for numerical evaluation
of the quantile function.

n number of random values to return

Details

This implementation of dinvgauss allows for automatic differentiation with RTMB. qinvgauss and
rinvgauss are imported from the statmod package.

Value

dinvgauss gives the density, pinvgauss gives the distribution function, qinvgauss gives the quan-
tile function, and rinvgauss generates random deviates.

laplace 27

Examples

x <- rinvgauss(1, 1, 0.5)
d <- dinvgauss(x, 1, 0.5)
p <- pinvgauss(x, 1, 0.5)
q <- qinvgauss(p, 1, 0.5)

laplace Laplace distribution

Description

Density, distribution function, quantile function, and random generation for the Laplace distribution.

Usage

dlaplace(x, mu = 0, b = 1, eps = NULL, log = FALSE)

plaplace(q, mu = 0, b = 1, lower.tail = TRUE, log.p = FALSE)

qlaplace(p, mu = 0, b = 1, lower.tail = TRUE, log.p = FALSE)

rlaplace(n, mu = 0, b = 1)

Arguments

x, q vector of quantiles

mu location parameter

b scale parameter, must be positive.

eps optional smoothing parameter for dlaplace to smooth the absolute value func-
tion. See abs_smooth for details. It is recommended to set this to a small
constant like 1e-6 for numerical optimisation.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

p vector of probabilities

n number of random values to return

Details

This implementation of dlaplace allows for automatic differentiation with RTMB.

Value

dlaplace gives the density, plaplace gives the distribution function, qlaplace gives the quantile
function, and rlaplace generates random deviates.

28 mvt

Examples

x <- rlaplace(1, 1, 1)
d <- dlaplace(x, 1, 1)
p <- plaplace(x, 1, 1)
q <- qlaplace(p, 1, 1)

mvt Multivariate t distribution

Description

Density and and random generation for the multivariate t distribution

Usage

dmvt(x, mu, Sigma, df, log = FALSE)

rmvt(n, mu, Sigma, df)

Arguments

x vector or matrix of quantiles

mu vector or matrix of location parameters (mean if df > 1)

Sigma positive definite scale matrix (proportional to the covariance matrix if df > 2)

df degrees of freedom; must be positive

log logical; if TRUE, densities p are returned as log(p).

n number of random values to return.

Details

This implementation of dmvt allows for automatic differentiation with RTMB.

Note: for df ≤ 1 the mean is undefined, and for df ≤ 2 the covariance is infinite. For df > 2, the
covariance is df/(df-2) * Sigma.

Value

dmvt gives the density, rmvt generates random deviates.

Examples

single mu
mu <- c(1,2,3)
Sigma <- diag(c(1,1,1))
df <- 5
x <- rmvt(2, mu, Sigma, df)
d <- dmvt(x, mu, Sigma, df)

nbinom2 29

vectorised over mu
mu <- rbind(c(1,2,3), c(0, 0.5, 1))
x <- rmvt(2, mu, Sigma, df)
d <- dmvt(x, mu, Sigma, df)

nbinom2 Reparameterised negative binomial distribution

Description

Probability mass function, distribution function, quantile function, and random generation for the
negative binomial distribution reparameterised in terms of mean and size.

Usage

dnbinom2(x, mu, size, log = FALSE)

pnbinom2(q, mu, size, lower.tail = TRUE, log.p = FALSE)

qnbinom2(p, mu, size, lower.tail = TRUE, log.p = FALSE)

rnbinom2(n, mu, size)

pnbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)

Arguments

x, q vector of quantiles

mu mean parameter, must be positive.

size size parameter, must be positive.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

p vector of probabilities

n number of random values to return.

prob probability of success in each trial. 0 < prob <= 1.

Details

This implementation allows for automatic differentiation with RTMB.

pnbinom is an AD-compatible implementation of the standard parameterisation of the CDF, missing
from RTMB.

Value

dnbinom2 gives the density, pnbinom2 gives the distribution function, qnbinom2 gives the quantile
function, and rnbinom2 generates random deviates.

30 oibeta

Examples

set.seed(123)
x <- rnbinom2(1, 1, 2)
d <- dnbinom2(x, 1, 2)
p <- pnbinom2(x, 1, 2)
q <- qnbinom2(p, 1, 2)

oibeta One-inflated beta distribution

Description

Density, distribution function, and random generation for the one-inflated beta distribution.

Usage

doibeta(x, shape1, shape2, oneprob = 0, log = FALSE)

poibeta(q, shape1, shape2, oneprob = 0, lower.tail = TRUE, log.p = FALSE)

roibeta(n, shape1, shape2, oneprob = 0)

Arguments

x, q vector of quantiles

shape1, shape2 non-negative shape parameters of the beta distribution

oneprob zero-inflation probability between 0 and 1.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

n number of random values to return.

Details

This implementation allows for automatic differentiation with RTMB.

Value

doibeta gives the density, poibeta gives the distribution function, and roibeta generates random
deviates.

Examples

set.seed(123)
x <- roibeta(1, 2, 2, 0.5)
d <- doibeta(x, 2, 2, 0.5)
p <- poibeta(x, 2, 2, 0.5)

oibeta2 31

oibeta2 Reparameterised one-inflated beta distribution

Description

Density, distribution function, and random generation for the one-inflated beta distribution repa-
rameterised in terms of mean and concentration.

Usage

doibeta2(x, mu, phi, oneprob = 0, log = FALSE)

poibeta2(q, mu, phi, oneprob = 0, lower.tail = TRUE, log.p = FALSE)

roibeta2(n, mu, phi, oneprob = 0)

Arguments

x, q vector of quantiles

mu mean parameter, must be in the interval from 0 to 1.

phi concentration parameter, must be positive.

oneprob zero-inflation probability between 0 and 1.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

n number of random values to return.

Details

This implementation allows for automatic differentiation with RTMB.

Value

doibeta2 gives the density, poibeta2 gives the distribution function, and roibeta2 generates
random deviates.

Examples

set.seed(123)
x <- roibeta2(1, 0.6, 2, 0.5)
d <- doibeta2(x, 0.6, 2, 0.5)
p <- poibeta2(x, 0.6, 2, 0.5)

32 pareto

pareto Pareto distribution

Description

Density, distribution function, quantile function, and random generation for the pareto distribution.

Usage

dpareto(x, mu = 1, log = FALSE)

ppareto(q, mu = 1, lower.tail = TRUE, log.p = FALSE)

qpareto(p, mu = 1, lower.tail = TRUE, log.p = FALSE)

rpareto(n, mu = 1)

Arguments

x, q vector of quantiles

mu location parameter, must be positive.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise P [X > x].

p vector of probabilities

n number of random values to return

Details

This implementation of dpareto and ppareto allows for automatic differentiation with RTMB while
the other functions are imported from gamlss.dist package. See gamlss.dist::PARETO for more
details.

Value

dpareto gives the density, ppareto gives the distribution function, qpareto gives the quantile
function, and rpareto generates random deviates.

References

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for mod-
eling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547.
An older version can be found in https://www.gamlss.com/.

pgweibull 33

Examples

set.seed(123)
x <- rpareto(1, mu = 5)
d <- dpareto(x, mu = 5)
p <- ppareto(x, mu = 5)
q <- qpareto(p, mu = 5)

pgweibull Power generalized Weibull distribution

Description

Survival, hazard, cumulative distribution, density, quantile and sampling function for the power
generalized Weibull (PgW) distribution with parameters scale, shape and powershape.

Usage

spgweibull(x, scale = 1, shape = 1, powershape = 1, log = FALSE)

hpgweibull(x, scale = 1, shape = 1, powershape = 1, log = FALSE)

ppgweibull(x, scale = 1, shape = 1, powershape = 1,
lower.tail = TRUE, log.p = FALSE)

dpgweibull(x, scale = 1, shape = 1, powershape = 1, log = FALSE)

qpgweibull(p, scale = 1, shape = 1, powershape = 1)

rpgweibull(n, scale = 1, shape = 1, powershape = 1)

Arguments

x vector of quantiles

scale positive scale parameter

shape positive shape parameter

powershape positive power shape parameter

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise P [X > x].

p vector of probabilities

n number of observations

34 powerexp

Details

The survival function of the PgW distribution is:

S(x) = exp

{
1−

[
1 +

(x
θ

)ν] 1
γ

}
.

The hazard function is
ν

γθν
· xν−1 ·

[
1 +

(x
θ

)ν] 1
γ−1

The cumulative distribution function is then F (x) = 1−S(x) and the density function is S(x)·h(x).
If both shape parameters equal 1, the PgW distribution reduces to the exponential distribution (see
dexp) with rate = 1/scale If the power shape parameter equals 1, the PgW distribution simplifies
to the Weibull distribution (see dweibull) with the same parametrization.

Value

dpgweibull gives the density, ppgweibull gives the distribution function, qpgweibull gives the
quantile function, and rpgweibull generates random deviates. spgweibull gives the survival func-
tion and hpgweibull gives the hazard function.

Examples

x <- rpgweibull(1, 2, 2, 3)
d <- dpgweibull(x, 2, 2, 3)
p <- ppgweibull(x, 2, 2, 3)
q <- qpgweibull(p, 2, 2, 3)
s <- spgweibull(x, 2, 2, 3)
h <- hpgweibull(x, 2, 2, 3)

powerexp Power Exponential distribution (PE and PE2)

Description

Density, distribution function, quantile function, and random generation for the Power Exponential
distribution (two versions).

Usage

dpowerexp(x, mu = 0, sigma = 1, nu = 2, log = FALSE)

ppowerexp(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)

qpowerexp(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)

rpowerexp(n, mu = 0, sigma = 1, nu = 2)

powerexp 35

dpowerexp2(x, mu = 0, sigma = 1, nu = 2, log = FALSE)

ppowerexp2(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)

qpowerexp2(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)

rpowerexp2(n, mu = 0, sigma = 1, nu = 2)

Arguments

x, q vector of quantiles

mu location parameter

sigma scale parameter, must be positive

nu shape parameter (real)

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p)

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise P [X > x]

p vector of probabilities

n number of random values to return

Details

This implementation of the densities and distribution functions allow for automatic differentiation
with RTMB while the other functions are imported from gamlss.dist package.

For powerexp, mu is the mean and sigma is the standard deviation while this does not hold for
powerexp2.

See gamlss.dist::PE for more details.

Value

dpowerexp gives the density, ppowerexp gives the distribution function, qpowerexp gives the quan-
tile function, and rpowerexp generates random deviates.

References

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for mod-
eling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547.
An older version can be found in https://www.gamlss.com/.

Examples

PE
x <- rpowerexp(1, mu = 0, sigma = 1, nu = 2)
d <- dpowerexp(x, mu = 0, sigma = 1, nu = 2)
p <- ppowerexp(x, mu = 0, sigma = 1, nu = 2)
q <- qpowerexp(p, mu = 0, sigma = 1, nu = 2)

PE2

36 skewnorm

x <- rpowerexp2(1, mu = 0, sigma = 1, nu = 2)
d <- dpowerexp2(x, mu = 0, sigma = 1, nu = 2)
p <- ppowerexp2(x, mu = 0, sigma = 1, nu = 2)
q <- qpowerexp2(p, mu = 0, sigma = 1, nu = 2)

skewnorm Skew normal distribution

Description

Density, distribution function, quantile function, and random generation for the skew normal distri-
bution.

Usage

dskewnorm(x, xi = 0, omega = 1, alpha = 0, log = FALSE)

pskewnorm(q, xi = 0, omega = 1, alpha = 0, ...)

qskewnorm(p, xi = 0, omega = 1, alpha = 0, ...)

rskewnorm(n, xi = 0, omega = 1, alpha = 0)

Arguments

x, q vector of quantiles

xi location parameter

omega scale parameter, must be positive.

alpha skewness parameter, +/- Inf is allowed.

log logical; if TRUE, probabilities/ densities p are returned as log(p).

... additional parameters to be passed to the sn package functions for pskewnorm
and qskewnorm.

p vector of probabilities

n number of random values to return

Details

This implementation of dskewnorm allows for automatic differentiation with RTMB while the other
functions are imported from the sn package. See sn::dsn for more details.

Value

dskewnorm gives the density, pskewnorm gives the distribution function, qskewnorm gives the quan-
tile function, and rskewnorm generates random deviates.

skewnorm2 37

See Also

skewnorm2, skewt, skewt2

Examples

alpha is skew parameter
x <- rskewnorm(1, alpha = 1)
d <- dskewnorm(x, alpha = 1)
p <- pskewnorm(x, alpha = 1)
q <- qskewnorm(p, alpha = 1)

skewnorm2 Reparameterised skew normal distribution

Description

Density, distribution function, quantile function and random generation for the skew normal distri-
bution reparameterised in terms of mean, standard deviation and skew magnitude

Usage

dskewnorm2(x, mean = 0, sd = 1, alpha = 0, log = FALSE)

pskewnorm2(q, mean = 0, sd = 1, alpha = 0, ...)

qskewnorm2(p, mean = 0, sd = 1, alpha = 0, ...)

rskewnorm2(n, mean = 0, sd = 1, alpha = 0)

Arguments

x, q vector of quantiles

mean mean parameter

sd standard deviation, must be positive.

alpha skewness parameter, +/- Inf is allowed.

log logical; if TRUE, probabilities/ densities p are returned as log(p).

... additional parameters to be passed to the sn package functions for pskewnorm
and qskewnorm.

p vector of probabilities

n number of random values to return

Details

This implementation of dskewnorm2 allows for automatic differentiation with RTMB while the other
functions are imported from the sn package.

38 skewt

Value

dskewnorm2 gives the density, pskewnorm2 gives the distribution function, qskewnorm2 gives the
quantile function, and rskewnorm2 generates random deviates.

See Also

skewnorm, skewt, skewt2

Examples

alpha is skew parameter
x <- rskewnorm2(1, alpha = 1)
d <- dskewnorm2(x, alpha = 1)
p <- pskewnorm2(x, alpha = 1)
q <- qskewnorm2(p, alpha = 1)

skewt Skewed students t distribution

Description

Density, distribution function, quantile function, and random generation for the skew t distribution
(type 2).

Usage

dskewt(x, mu = 0, sigma = 1, skew = 0, df = 100, log = FALSE)

pskewt(q, mu = 0, sigma = 1, skew = 0, df = 100,
method = 0, lower.tail = TRUE, log.p = FALSE)

qskewt(p, mu = 0, sigma = 1, skew = 0, df = 100,
tol = 1e-8, method = 0)

rskewt(n, mu = 0, sigma = 1, skew = 0, df = 100)

Arguments

x, q vector of quantiles

mu location parameter

sigma scale parameter, must be positive.

skew skewness parameter, can be positive or negative.

df degrees of freedom, must be positive.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

skewt2 39

method an integer value between 0 and 5 which selects the computing method; see
‘Details’ in the pst documentation below for the meaning of these values. If
method=0 (default value), an automatic choice is made among the four actual
computing methods, depending on the other arguments.

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

p vector of probabilities

tol a scalar value which regulates the accuracy of the result of qsn, measured on the
probability scale.

n number of random values to return.

Details

This corresponds to the skew t type 2 distribution in GAMLSS (ST2), see pp. 411-412 of Rigby et
al. (2019) and the version implemented in the sn package. This implementation of dskewt allows
for automatic differentiation with RTMB while the other functions are imported from the sn package.
See sn::dst for more details.

Caution: In a numerial optimisation, the skew parameter should NEVER be initialised with exactly
zero. This will cause the initial and all subsequent derivatives to be exactly zero and hence the
parameter will remain at its initial value.

Value

dskewt gives the density, pskewt gives the distribution function, qskewt gives the quantile function,
and rskewt generates random deviates.

See Also

skewt2, skewnorm, skewnorm2

Examples

x <- rskewt(1, 1, 2, 5, 2)
d <- dskewt(x, 1, 2, 5, 2)
p <- pskewt(x, 1, 2, 5, 2)
q <- qskewt(p, 1, 2, 5, 2)

skewt2 Moment-parameterised skew t distribution

Description

Density, distribution function, quantile function, and random generation for the skew t distribution
reparameterised so that mean and sd correspond to the true mean and standard deviation.

40 skewt2

Usage

dskewt2(x, mean = 0, sd = 1, skew = 0, df = 100, log = FALSE)

pskewt2(q, mean = 0, sd = 1, skew = 0, df = 100,
method = 0, lower.tail = TRUE, log.p = FALSE)

qskewt2(p, mean = 0, sd = 1, skew = 0, df = 100, tol = 1e-08, method = 0)

rskewt2(n, mean = 0, sd = 1, skew = 0, df = 100)

Arguments

x, q vector of quantiles

mean mean parameter

sd standard deviation parameter, must be positive.

skew skewness parameter, can be positive or negative.

df degrees of freedom, must be positive.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

method an integer value between 0 and 5 which selects the computing method; see
‘Details’ in the pst documentation below for the meaning of these values. If
method=0 (default value), an automatic choice is made among the four actual
computing methods, depending on the other arguments.

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

p vector of probabilities

tol a scalar value which regulates the accuracy of the result of qsn, measured on the
probability scale.

n number of random values to return.

Details

This corresponds to the skew t type 2 distribution in GAMLSS (ST2), see pp. 411-412 of Rigby
et al. (2019) and the version implemented in the sn package. However, it is reparameterised in
terms of a standard deviation parameter sd rather than just a scale parameter sigma. Details of this
reparameterisation are given below. This implementation of dskewt allows for automatic differenti-
ation with RTMB while the other functions are imported from the sn package. See sn::dst for more
details.

Caution: In a numerial optimisation, the skew parameter should NEVER be initialised with exactly
zero. This will cause the initial and all subsequent derivatives to be exactly zero and hence the
parameter will remain at its initial value.

For given skew = α and df = ν, define

δ = α/
√
1 + α2, bν =

√
ν/π Γ((ν − 1)/2)/Γ(ν/2),

then

E(X) = µ+ σδbν , V ar(X) = σ2

(
ν

ν − 2
− δ2b2ν

)
.

t2 41

Value

dskewt2 gives the density, pskewt2 gives the distribution function, qskewt2 gives the quantile
function, and rskewt2 generates random deviates.

See Also

skewt, skewnorm, skewnorm2

Examples

x <- rskewt2(1, 1, 2, 5, 5)
d <- dskewt2(x, 1, 2, 5, 5)
p <- pskewt2(x, 1, 2, 5, 5)
q <- qskewt2(p, 1, 2, 5, 5)

t2 Student t distribution with location and scale

Description

Density, distribution function, quantile function, and random generation for the t distribution with
location and scale parameters.

Usage

dt2(x, mu, sigma, df, log = FALSE)

pt2(q, mu, sigma, df)

rt2(n, mu, sigma, df)

qt2(p, mu, sigma, df)

pt(q, df)

Arguments

x, q vector of quantiles

mu location parameter

sigma scale parameter, must be positive.

df degrees of freedom, must be positive.

log logical; if TRUE, probabilities/ densities p are returned as log(p).

n number of random values to return.

p vector of probabilities

42 truncnorm

Details

This implementation of dt2 allows for automatic differentiation with RTMB.

Value

dt2 gives the density, pt2 gives the distribution function, qt2 gives the quantile function, and rt2
generates random deviates.

Examples

x <- rt2(1, 1, 2, 5)
d <- dt2(x, 1, 2, 5)
p <- pt2(x, 1, 2, 5)
q <- qt2(p, 1, 2, 5)

truncnorm Truncated normal distribution

Description

Density, distribution function, quantile function, and random generation for the truncated normal
distribution.

Usage

dtruncnorm(x, mean = 0, sd = 1, min = -Inf, max = Inf, log = FALSE)

ptruncnorm(q, mean = 0, sd = 1, min = -Inf, max = Inf,
lower.tail = TRUE, log.p = FALSE)

qtruncnorm(p, mean = 0, sd = 1, min = -Inf, max = Inf,
lower.tail = TRUE, log.p = FALSE)

rtruncnorm(n, mean = 0, sd = 1, min = -Inf, max = Inf)

Arguments

x, q vector of quantiles

mean mean parameter, must be positive.

sd standard deviation parameter, must be positive.

min, max truncation bounds.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

p vector of probabilities

n number of random values to return.

trunct 43

Details

This implementation of dtruncnorm allows for automatic differentiation with RTMB.

Value

dtruncnorm gives the density, ptruncnorm gives the distribution function, qtruncnorm gives the
quantile function, and rtruncnorm generates random deviates.

Examples

x <- rtruncnorm(1, mean = 2, sd = 2, min = -1, max = 5)
d <- dtruncnorm(x, mean = 2, sd = 2, min = -1, max = 5)
p <- ptruncnorm(x, mean = 2, sd = 2, min = -1, max = 5)
q <- qtruncnorm(p, mean = 2, sd = 2, min = -1, max = 5)

trunct Truncated t distribution

Description

Density, distribution function, quantile function, and random generation for the truncated t distribu-
tion.

Usage

dtrunct(x, df, min = -Inf, max = Inf, log = FALSE)

ptrunct(q, df, min = -Inf, max = Inf, lower.tail = TRUE, log.p = FALSE)

qtrunct(p, df, min = -Inf, max = Inf, lower.tail = TRUE, log.p = FALSE)

rtrunct(n, df, min = -Inf, max = Inf)

Arguments

x, q vector of quantiles

df degrees of freedom parameter, must be positive.

min, max truncation bounds.

log, log.p logical; if TRUE, probabilities/densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise P [X > x].

p vector of probabilities

n number of random values to return.

Details

This implementation of dtrunct allows for automatic differentiation with RTMB.

44 trunct2

Value

dtrunct gives the density, ptrunct gives the distribution function, qtrunct gives the quantile
function, and rtrunct generates random deviates.

Examples

x <- rtrunct(1, df = 5, min = -1, max = 5)
d <- dtrunct(x, df = 5, min = -1, max = 5)
p <- ptrunct(x, df = 5, min = -1, max = 5)
q <- qtrunct(p, df = 5, min = -1, max = 5)

trunct2 Truncated t distribution with location and scale

Description

Density, distribution function, quantile function, and random generation for the truncated t distribu-
tion with location mu and scale sigma.

Usage

dtrunct2(x, df, mu = 0, sigma = 1, min = -Inf, max = Inf, log = FALSE)

ptrunct2(q, df, mu = 0, sigma = 1, min = -Inf, max = Inf,
lower.tail = TRUE, log.p = FALSE)

qtrunct2(p, df, mu = 0, sigma = 1, min = -Inf, max = Inf,
lower.tail = TRUE, log.p = FALSE)

rtrunct2(n, df, mu = 0, sigma = 1, min = -Inf, max = Inf)

Arguments

x, q vector of quantiles

df degrees of freedom parameter, must be positive.

mu location parameter.

sigma scale parameter, must be positive.

min, max truncation bounds.

log, log.p logical; if TRUE, probabilities/densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise P [X > x].

p vector of probabilities

n number of random values to return.

Details

This implementation of dtrunct2 allows for automatic differentiation with RTMB.

vm 45

Value

dtrunct2 gives the density, ptrunct2 gives the distribution function, qtrunct2 gives the quantile
function, and rtrunct2 generates random deviates.

Examples

x <- rtrunct2(1, df = 5, mu = 2, sigma = 3, min = -1, max = 5)
d <- dtrunct2(x, df = 5, mu = 2, sigma = 3, min = -1, max = 5)
p <- ptrunct2(x, df = 5, mu = 2, sigma = 3, min = -1, max = 5)
q <- qtrunct2(p, df = 5, mu = 2, sigma = 3, min = -1, max = 5)

vm von Mises distribution

Description

Density, distribution function, and random generation for the von Mises distribution.

Usage

dvm(x, mu = 0, kappa = 1, log = FALSE)

pvm(q, mu = 0, kappa = 1, from = NULL, tol = 1e-20)

rvm(n, mu = 0, kappa = 1, wrap = TRUE)

Arguments

x, q vector of angles measured in radians at which to evaluate the density function.

mu mean direction of the distribution measured in radians.

kappa non-negative numeric value for the concentration parameter of the distribution.

log logical; if TRUE, densities are returned on the log scale.

from value from which the integration for CDF starts. If NULL, is set to mu - pi.

tol the precision in evaluating the distribution function

n number of random values to return.

wrap logical; if TRUE, generated angles are wrapped to the interval from -pi to pi.

Details

This implementation of dvm allows for automatic differentiation with RTMB. rvm and pvm are simply
wrappers of the corresponding functions from circular.

Value

dvm gives the density, pvm gives the distribution function, and rvm generates random deviates.

46 vmf

Examples

set.seed(1)
x <- rvm(10, 0, 1)
d <- dvm(x, 0, 1)
p <- pvm(x, 0, 1)

vmf von Mises-Fisher distribution

Description

Density, distribution function, and random generation for the von Mises-Fisher distribution.

Usage

dvmf(x, mu, kappa, log = FALSE)

rvmf(n, mu, kappa)

Arguments

x unit vector or matrix (with each row being a unit vector) of evaluation points

mu unit mean vector

kappa non-negative numeric value for the concentration parameter of the distribution.

log logical; if TRUE, densities are returned on the log scale.

n number of random values to return.

Details

This implementation of dvmf allows for automatic differentiation with RTMB. rvmf is a reparame-
terised import from movMF::rmovMF.

Value

dvmf gives the density and rvm generates random deviates.

Examples

set.seed(123)
single parameter set
mu <- rep(1, 3) / sqrt(3)
kappa <- 4
x <- rvmf(1, mu, kappa)
d <- dvmf(x, mu, kappa)

vectorised over parameters
mu <- matrix(mu, nrow = 1)

vmf2 47

mu <- mu[rep(1,10),]
kappa <- rep(kappa, 10)
x <- rvmf(10, mu, kappa)
d <- dvmf(x, mu, kappa)

vmf2 Reparameterised von Mises-Fisher distribution

Description

Density, distribution function, and random generation for the von Mises-Fisher distribution.

Usage

dvmf2(x, theta, log = FALSE)

rvmf2(n, theta)

Arguments

x unit vector or matrix (with each row being a unit vector) of evaluation points
theta direction and concentration vector. The direction of theta determines the mean

direction on the sphere. The norm of theta is the concentration parameter of
the distribution.

log logical; if TRUE, densities are returned on the log scale.
n number of random values to return.

Details

In this parameterisation, θ = κµ, where µ is a unit vector and κ is the concentration parameter.

dvmf2 allows for automatic differentiation with RTMB. rvmf2 is imported from movMF::rmovMF.

Value

dvmf gives the density and rvm generates random deviates.

Examples

set.seed(123)
single parameter set
theta <- c(1,2,3)
x <- rvmf2(1, theta)
d <- dvmf2(x, theta)

vectorised over parameters
theta <- matrix(theta, nrow = 1)
theta <- theta[rep(1,10),]
x <- rvmf2(10, theta)
d <- dvmf2(x, theta)

48 wrpcauchy

wishart Wishart distribution

Description

Density and random generation for the wishart distribution

Usage

dwishart(x, nu, Sigma, log = FALSE)

rwishart(n, nu, Sigma)

Arguments

x positive definite p x p matrix of evaluation points

nu degrees of freedom, needs to be greater than p - 1

Sigma scale matrix, needs to be positive definite and match the dimension of x.

log logical; if TRUE, densities p are returned as log(p).

n number of random deviates to return

Value

dwishart gives the density, rwishart generates random deviates (matrix for n = 1, array for n > 1)

Examples

x <- rwishart(1, nu = 5, Sigma = diag(3))
d <- dwishart(x, nu = 5, Sigma = diag(3))

wrpcauchy wrapped Cauchy distribution

Description

Density and random generation for the wrapped Cauchy distribution.

Usage

dwrpcauchy(x, mu = 0, rho, log = FALSE)

rwrpcauchy(n, mu = 0, rho, wrap = TRUE)

zero_inflate 49

Arguments

x vector of angles measured in radians at which to evaluate the density function.

mu mean direction of the distribution measured in radians.

rho concentration parameter of the distribution, must be in the interval from 0 to 1.

log logical; if TRUE, densities are returned on the log scale.

n number of random values to return.

wrap logical; if TRUE, generated angles are wrapped to the interval from -pi to pi.

Details

This implementation of dwrpcauchy allows for automatic differentiation with RTMB. rwrpcauchy is
simply a wrapper for rwrappedcauchyimported from circular.

Value

dwrpcauchy gives the density and rwrpcauchy generates random deviates.

Examples

set.seed(1)
x <- rwrpcauchy(10, 0, 0.5)
d <- dwrpcauchy(x, 0, 0.5)

zero_inflate Zero-inflated density constructer

Description

Constructs a zero-inflated density function from a given probability density function

Usage

zero_inflate(dist, discrete = NULL)

Arguments

dist either a probability density function or a probability mass function

discrete logical; if TRUE, the density for x = 0 will be zeroprob + (1-zeroprob) * dist(0,
...). Otherwise it will just be zeroprob. In standard cases, this will be deter-
mined automatically. For non-standard cases, set this to TRUE or FALSE depend-
ing on the type of dist. See details.

50 zibeta

Details

The definition of zero-inflation is different for discrete and continuous distributions. For discrete
distributions with p.m.f. f and zero-inflation probability p, we have

Pr(X = 0) = p+ (1− p) · f(0),

and
Pr(X = x) = (1− p) · f(x), x > 0.

For continuous distributions with p.d.f. f , we have

fzinfl(x) = p · δ0(x) + (1− p) · f(x),

where δ0 is the Dirac delta function at zero.

Value

zero-inflated density function with first argument x, second argument zeroprob, and additional
arguments ... that will be passed to dist.

Examples

Zero-inflated normal distribution
dzinorm <- zero_inflate(dnorm)
dzinorm(c(NA, 0, 2), 0.5, mean = 1, sd = 1)

Zero-inflated Poisson distribution
zipois <- zero_inflate(dpois)
zipois(c(NA, 0, 1), 0.5, 1)

Non-standard case: Zero-inflated reparametrised beta distribution
dzibeta2 <- zero_inflate(dbeta2, discrete = FALSE)

zibeta Zero-inflated beta distribution

Description

Density, distribution function, and random generation for the zero-inflated beta distribution.

Usage

dzibeta(x, shape1, shape2, zeroprob = 0, log = FALSE)

pzibeta(q, shape1, shape2, zeroprob = 0, lower.tail = TRUE, log.p = FALSE)

rzibeta(n, shape1, shape2, zeroprob = 0)

zibeta2 51

Arguments

x, q vector of quantiles

shape1, shape2 non-negative shape parameters of the beta distribution

zeroprob zero-inflation probability between 0 and 1.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

n number of random values to return.

Details

This implementation allows for automatic differentiation with RTMB.

Value

dzibeta gives the density, pzibeta gives the distribution function, and rzibeta generates random
deviates.

Examples

set.seed(123)
x <- rzibeta(1, 2, 2, 0.5)
d <- dzibeta(x, 2, 2, 0.5)
p <- pzibeta(x, 2, 2, 0.5)

zibeta2 Reparameterised zero-inflated beta distribution

Description

Density, distribution function, and random generation for the zero-inflated beta distribution repa-
rameterised in terms of mean and concentration.

Usage

dzibeta2(x, mu, phi, zeroprob = 0, log = FALSE)

pzibeta2(q, mu, phi, zeroprob = 0, lower.tail = TRUE, log.p = FALSE)

rzibeta2(n, mu, phi, zeroprob = 0)

52 zibinom

Arguments

x, q vector of quantiles

mu mean parameter, must be in the interval from 0 to 1.

phi concentration parameter, must be positive.

zeroprob zero-inflation probability between 0 and 1.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise P [X > x].

n number of random values to return.

p vector of probabilities

Details

This implementation allows for automatic differentiation with RTMB.

Value

dzibeta2 gives the density, pzibeta2 gives the distribution function, and rzibeta2 generates
random deviates.

Examples

set.seed(123)
x <- rzibeta2(1, 0.5, 1, 0.5)
d <- dzibeta2(x, 0.5, 1, 0.5)
p <- pzibeta2(x, 0.5, 1, 0.5)

zibinom Zero-inflated binomial distribution

Description

Probability mass function, distribution function, and random generation for the zero-inflated bino-
mial distribution.

Usage

dzibinom(x, size, prob, zeroprob = 0, log = FALSE)

pzibinom(q, size, prob, zeroprob = 0, lower.tail = TRUE, log.p = FALSE)

rzibinom(n, size, prob, zeroprob = 0)

zigamma 53

Arguments

x, q vector of quantiles

size number of trials (zero or more).

prob probability of success on each trial.

zeroprob zero-inflation probability between 0 and 1

log, log.p logical; return log-density if TRUE

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

n number of random values to return.

Details

This implementation allows for automatic differentiation with RTMB.

Value

dzibinom gives the probability mass function, pzibinom gives the distribution function, and rzibinom
generates random deviates.

Examples

set.seed(123)
x <- rzibinom(1, size = 10, prob = 0.5, zeroprob = 0.5)
d <- dzibinom(x, size = 10, prob = 0.5, zeroprob = 0.5)
p <- pzibinom(x, size = 10, prob = 0.5, zeroprob = 0.5)

zigamma Zero-inflated gamma distribution

Description

Density, distribution function, and random generation for the zero-inflated gamma distribution.

Usage

dzigamma(x, shape, scale, zeroprob = 0, log = FALSE)

pzigamma(q, shape, scale, zeroprob = 0, lower.tail = TRUE, log.p = FALSE)

rzigamma(n, shape, scale, zeroprob = 0)

54 zigamma2

Arguments

x, q vector of quantiles

shape positive shape parameter

scale positive scale parameter

zeroprob zero-inflation probability between 0 and 1.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

n number of random values to return

Details

This implementation allows for automatic differentiation with RTMB.

Value

dzigamma gives the density, pzigamma gives the distribution function, and rzigamma generates
random deviates.

Examples

x <- rzigamma(1, 1, 1, 0.5)
d <- dzigamma(x, 1, 1, 0.5)
p <- pzigamma(x, 1, 1, 0.5)

zigamma2 Zero-inflated and reparameterised gamma distribution

Description

Density, distribution function, and random generation for the zero-inflated gamma distribution repa-
rameterised in terms of mean and standard deviation.

Usage

dzigamma2(x, mean = 1, sd = 1, zeroprob = 0, log = FALSE)

pzigamma2(q, mean = 1, sd = 1, zeroprob = 0)

rzigamma2(n, mean = 1, sd = 1, zeroprob = 0)

ziinvgauss 55

Arguments

x, q vector of quantiles

mean mean parameter, must be positive.

sd standard deviation parameter, must be positive.

zeroprob zero-inflation probability between 0 and 1.

log logical; if TRUE, probabilities/ densities p are returned as log(p).

n number of random values to return

Details

This implementation allows for automatic differentiation with RTMB.

Value

dzigamma2 gives the density, pzigamma2 gives the distribution function, and rzigamma generates
random deviates.

Examples

x <- rzigamma2(1, 2, 1, 0.5)
d <- dzigamma2(x, 2, 1, 0.5)
p <- pzigamma2(x, 2, 1, 0.5)

ziinvgauss Zero-inflated inverse Gaussian distribution

Description

Density, distribution function, and random generation for the zero-inflated inverse Gaussian distri-
bution.

Usage

dziinvgauss(x, mean = 1, shape = 1, zeroprob = 0, log = FALSE)

pziinvgauss(q, mean = 1, shape = 1, zeroprob = 0, lower.tail = TRUE, log.p = FALSE)

rziinvgauss(n, mean = 1, shape = 1, zeroprob = 0)

56 zilnorm

Arguments

x, q vector of quantiles

mean location parameter

shape shape parameter, must be positive.

zeroprob zero-probability, must be in [0, 1].

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

n number of random values to return

Details

This implementation of zidinvgauss allows for automatic differentiation with RTMB.

Value

dziinvgauss gives the density, pziinvgauss gives the distribution function, and rziinvgauss
generates random deviates.

Examples

x <- rziinvgauss(1, 1, 2, 0.5)
d <- dziinvgauss(x, 1, 2, 0.5)
p <- pziinvgauss(x, 1, 2, 0.5)

zilnorm Zero-inflated log normal distribution

Description

Density, distribution function, and random generation for the zero-inflated log normal distribution.

Usage

dzilnorm(x, meanlog = 0, sdlog = 1, zeroprob = 0, log = FALSE)

pzilnorm(q, meanlog = 0, sdlog = 1, zeroprob = 0,
lower.tail = TRUE, log.p = FALSE)

rzilnorm(n, meanlog = 0, sdlog = 1, zeroprob = 0)

plnorm(q, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)

zinbinom 57

Arguments

x, q vector of quantiles

meanlog, sdlog mean and standard deviation of the distribution on the log scale with default
values of 0 and 1 respectively.

zeroprob zero-inflation probability between 0 and 1.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

n number of random values to return

Details

This implementation allows for automatic differentiation with RTMB.

Value

dzilnorm gives the density, pzilnorm gives the distribution function, and rzilnorm generates
random deviates.

Examples

x <- rzilnorm(1, 1, 1, 0.5)
d <- dzilnorm(x, 1, 1, 0.5)
p <- pzilnorm(x, 1, 1, 0.5)

zinbinom Zero-inflated negative binomial distribution

Description

Probability mass function, distribution function, quantile function, and random generation for the
zero-inflated negative binomial distribution.

Usage

dzinbinom(x, size, prob, zeroprob = 0, log = FALSE)

pzinbinom(q, size, prob, zeroprob = 0, lower.tail = TRUE, log.p = FALSE)

rzinbinom(n, size, prob, zeroprob = 0)

58 zinbinom2

Arguments

x, q vector of (non-negative integer) quantiles

size size parameter, must be positive.

prob mean parameter, must be positive.

zeroprob zero-inflation probability between 0 and 1.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

n number of random values to return.

p vector of probabilities

Details

This implementation allows for automatic differentiation with RTMB.

Value

dzinbinom gives the density, pzinbinom gives the distribution function, and rzinbinom generates
random deviates.

Examples

set.seed(123)
x <- rzinbinom(1, size = 2, prob = 0.5, zeroprob = 0.5)
d <- dzinbinom(x, size = 2, prob = 0.5, zeroprob = 0.5)
p <- pzinbinom(x, size = 2, prob = 0.5, zeroprob = 0.5)

zinbinom2 Zero-inflated and reparameterised negative binomial distribution

Description

Probability mass function, distribution function, quantile function and random generation for the
zero-inflated negative binomial distribution reparameterised in terms of mean and size.

Usage

dzinbinom2(x, mu, size, zeroprob = 0, log = FALSE)

pzinbinom2(q, mu, size, zeroprob = 0, lower.tail = TRUE, log.p = FALSE)

rzinbinom2(n, mu, size, zeroprob = 0)

zipois 59

Arguments

x, q vector of (non-negative integer) quantiles

mu mean parameter, must be positive.

size size parameter, must be positive.

zeroprob zero-inflation probability between 0 and 1.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

n number of random values to return.

p vector of probabilities

Details

This implementation allows for automatic differentiation with RTMB.

Value

dzinbinom2 gives the density, pzinbinom2 gives the distribution function, and rzinbinom2 gener-
ates random deviates.

Examples

set.seed(123)
x <- rzinbinom2(1, 2, 1, zeroprob = 0.5)
d <- dzinbinom2(x, 2, 1, zeroprob = 0.5)
p <- pzinbinom2(x, 2, 1, zeroprob = 0.5)

zipois Zero-inflated Poisson distribution

Description

Probability mass function, distribution function, and random generation for the zero-inflated Pois-
son distribution.

Usage

dzipois(x, lambda, zeroprob = 0, log = FALSE)

pzipois(q, lambda, zeroprob = 0, lower.tail = TRUE, log.p = FALSE)

rzipois(n, lambda, zeroprob = 0)

60 zoibeta

Arguments

x, q integer vector of counts

lambda vector of (non-negative) means

zeroprob zero-inflation probability between 0 and 1

log, log.p logical; return log-density if TRUE

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

n number of random values to return.

Details

This implementation allows for automatic differentiation with RTMB.

Value

dzipois gives the probability mass function, pzipois gives the distribution function, and rzipois
generates random deviates.

Examples

set.seed(123)
x <- rzipois(1, 0.5, 1)
d <- dzipois(x, 0.5, 1)
p <- pzipois(x, 0.5, 1)

zoibeta Zero- and one-inflated beta distribution

Description

Density, distribution function, and random generation for the zero-one-inflated beta distribution.

Usage

dzoibeta(x, shape1, shape2, zeroprob = 0, oneprob = 0, log = FALSE)

pzoibeta(q, shape1, shape2, zeroprob = 0, oneprob = 0,
lower.tail = TRUE, log.p = FALSE)

rzoibeta(n, shape1, shape2, zeroprob = 0, oneprob = 0)

zoibeta2 61

Arguments

x, q vector of quantiles

shape1, shape2 non-negative shape parameters of the beta distribution

zeroprob zero-inflation probability between 0 and 1.

oneprob zero-inflation probability between 0 and 1.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

n number of random values to return.

Details

This implementation allows for automatic differentiation with RTMB.

Value

dzoibeta gives the density, pzoibeta gives the distribution function, and rzoibeta generates
random deviates.

Examples

set.seed(123)
x <- rzoibeta(1, 2, 2, 0.2, 0.3)
d <- dzoibeta(x, 2, 2, 0.2, 0.3)
p <- pzoibeta(x, 2, 2, 0.2, 0.3)

zoibeta2 Reparameterised zero- and one-inflated beta distribution

Description

Density, distribution function, and random generation for the zero-one-inflated beta distribution
reparameterised in terms of mean and concentration.

Usage

dzoibeta2(x, mu, phi, zeroprob = 0, oneprob = 0, log = FALSE)

pzoibeta2(q, mu, phi, zeroprob = 0, oneprob = 0,
lower.tail = TRUE, log.p = FALSE)

rzoibeta2(n, mu, phi, zeroprob = 0, oneprob = 0)

62 ztbinom

Arguments

x, q vector of quantiles

mu mean parameter, must be in the interval from 0 to 1.

phi concentration parameter, must be positive.

zeroprob zero-inflation probability between 0 and 1.

oneprob zero-inflation probability between 0 and 1.

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

n number of random values to return.

Details

This implementation allows for automatic differentiation with RTMB.

Value

dzoibeta2 gives the density, pzoibeta2 gives the distribution function, and rzoibeta2 generates
random deviates.

Examples

set.seed(123)
x <- rzoibeta2(1, 0.6, 2, 0.2, 0.3)
d <- dzoibeta2(x, 0.6, 2, 0.2, 0.3)
p <- pzoibeta2(x, 0.6, 2, 0.2, 0.3)

ztbinom Zero-truncated Binomial distribution

Description

Probability mass function, distribution function, and random generation for the zero-truncated Bi-
nomial distribution.

Usage

dztbinom(x, size, prob, log = FALSE)

pztbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)

rztbinom(n, size, prob)

ztnbinom 63

Arguments

x, q integer vector of counts

size number of trials

prob success probability in each trial

log, log.p logical; return log-density if TRUE

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

n number of random values to return.

Details

This implementation allows for automatic differentiation with RTMB.

By definition, this distribution only has support on the positive integers (1, ..., size). Any zero-
truncated distribution is defined as

P (X = x|X > 0) = P (X = x)/(1− P (X = 0)),

where P (X = x) is the probability mass function of the corresponding untruncated distribution.

Value

dztbinom gives the probability mass function, pztbinom gives the distribution function, and rztbinom
generates random deviates.

Examples

set.seed(123)
x <- rztbinom(1, size = 10, prob = 0.3)
d <- dztbinom(x, size = 10, prob = 0.3)
p <- pztbinom(x, size = 10, prob = 0.3)

ztnbinom Zero-truncated Negative Binomial distribution

Description

Probability mass function, distribution function, and random generation for the zero-truncated Neg-
ative Binomial distribution.

Usage

dztnbinom(x, size, prob, log = FALSE)

pztnbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)

rztnbinom(n, size, prob)

64 ztnbinom2

Arguments

x, q integer vector of counts

size target for number of successful trials, or dispersion parameter (the shape param-
eter of the gamma mixing distribution). Must be strictly positive, need not be
integer.

prob probability of success in each trial. 0 < prob <= 1.

log, log.p logical; return log-density if TRUE

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

n number of random values to return.

Details

This implementation allows for automatic differentiation with RTMB.

By definition, this distribution only has support on the positive integers (1, 2, ...). Any zero-
truncated distribution is defined as

P (X = x|X > 0) = P (X = x)/(1− P (X = 0)),

where P (X = x) is the probability mass function of the corresponding untruncated distribution.

Value

dztnbinom gives the probability mass function, pztnbinom gives the distribution function, and
rztnbinom generates random deviates.

Examples

set.seed(123)
x <- rztnbinom(1, size = 2, prob = 0.5)
d <- dztnbinom(x, size = 2, prob = 0.5)
p <- pztnbinom(x, size = 2, prob = 0.5)

ztnbinom2 Reparameterised zero-truncated negative binomial distribution

Description

Probability mass function, distribution function, quantile function, and random generation for the
zero-truncated negative binomial distribution reparameterised in terms of mean and size.

Usage

dztnbinom2(x, mu, size, log = FALSE)

pztnbinom2(q, mu, size, lower.tail = TRUE, log.p = FALSE)

rztnbinom2(n, mu, size)

ztpois 65

Arguments

x, q integer vector of counts

mu mean parameter, must be positive

size size/dispersion parameter, must be positive

log, log.p logical; return log-density if TRUE

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

n number of random values to return.

Details

This implementation allows for automatic differentiation with RTMB.

By definition, this distribution only has support on the positive integers (1, 2, ...). Any zero-
truncated distribution is defined as

P (X = x|X > 0) = P (X = x)/(1− P (X = 0)),

where P (X = x) is the probability mass function of the corresponding untruncated distribution.

Value

dztnbinom2 gives the probability mass function, pztnbinom2 gives the distribution function, and
rztnbinom2 generates random deviates.

Examples

set.seed(123)
x <- rztnbinom2(1, mu = 2, size = 1)
d <- dztnbinom2(x, mu = 2, size = 1)
p <- pztnbinom2(x, mu = 2, size = 1)

ztpois Zero-truncated Poisson distribution

Description

Probability mass function, distribution function, and random generation for the zero-truncated Pois-
son distribution.

Usage

dztpois(x, lambda, log = FALSE)

pztpois(q, lambda, lower.tail = TRUE, log.p = FALSE)

rztpois(n, lambda)

66 ztpois

Arguments

x, q integer vector of counts

lambda vector of (non-negative) means

log, log.p logical; return log-density if TRUE

lower.tail logical; if TRUE, probabilities are P [X ≤ x], otherwise, P [X > x].

n number of random values to return.

Details

This implementation allows for automatic differentiation with RTMB.

By definition, this distribution only has support on the positive integers (1, 2, ...). Any zero-
truncated distribution is defined as

P (X = x|X > 0) = P (X = x)/(1− P (X = 0)),

where P (X = x) is the probability mass function of the corresponding untruncated distribution.

Value

dztpois gives the probability mass function, pztpois gives the distribution function, and rztpois
generates random deviates.

Examples

set.seed(123)
x <- rztpois(1, 0.5)
d <- dztpois(x, 0.5)
p <- pztpois(x, 0.5)

Index

abs_smooth, 3, 27

BCCG, 4
bccg, 4
BCPE, 5
bcpe, 5
BCT, 6
bct, 6
beta2, 7
betabinom, 8

Cclayton, 17
Cclayton (cclayton), 9
cclayton, 9, 15
cclayton(), 10, 11, 13
Cfrank, 17
Cfrank (cfrank), 10
cfrank, 10, 15
cfrank(), 9, 11, 13
cgaussian, 11, 15
cgaussian(), 9, 10, 13
cgmrf, 12, 19
cgmrf(), 14
Cgumbel, 17
Cgumbel (cgumbel), 13
cgumbel, 13, 15
cgumbel(), 9–11
cmvgauss, 14, 19
cmvgauss(), 12

dbccg (bccg), 4
dbcpe (bcpe), 5
dbct (bct), 6
dbeta (beta2), 7
dbeta2 (beta2), 7
dbetabinom (betabinom), 8
dcopula, 9–11, 13, 15
dcopula(), 17, 20
ddcopula, 16
ddcopula(), 15, 20

ddirichlet (dirichlet), 17
ddirmult (dirmult), 18
dexgauss (exgauss), 21
dexp, 34
dfoldnorm (foldnorm), 22
dgamma2 (gamma2), 23
dgenpois (genpois), 24
dgumbel (gumbel), 25
dinvgauss (invgauss), 26
dirichlet, 17
dirmult, 18
dlaplace (laplace), 27
dmvcopula, 14, 19
dmvcopula(), 15, 17
dmvt (mvt), 28
dnbinom2 (nbinom2), 29
doibeta (oibeta), 30
doibeta2 (oibeta2), 31
dpareto (pareto), 32
dpgweibull (pgweibull), 33
dpowerexp (powerexp), 34
dpowerexp2 (powerexp), 34
dskewnorm (skewnorm), 36
dskewnorm2 (skewnorm2), 37
dskewt (skewt), 38
dskewt2 (skewt2), 39
dsn, 36
dst, 39, 40
dt2 (t2), 41
dtruncnorm (truncnorm), 42
dtrunct (trunct), 43
dtrunct2 (trunct2), 44
dvm (vm), 45
dvmf (vmf), 46
dvmf2 (vmf2), 47
dweibull, 34
dwishart (wishart), 48
dwrpcauchy (wrpcauchy), 48
dzibeta (zibeta), 50

67

68 INDEX

dzibeta2 (zibeta2), 51
dzibinom (zibinom), 52
dzigamma (zigamma), 53
dzigamma2 (zigamma2), 54
dziinvgauss (ziinvgauss), 55
dzilnorm (zilnorm), 56
dzinbinom (zinbinom), 57
dzinbinom2 (zinbinom2), 58
dzipois (zipois), 59
dzoibeta (zoibeta), 60
dzoibeta2 (zoibeta2), 61
dztbinom (ztbinom), 62
dztnbinom (ztnbinom), 63
dztnbinom2 (ztnbinom2), 64
dztpois (ztpois), 65

erf, 20
erfc (erf), 20
exGAUS, 21
exgauss, 21

foldnorm, 22

gamma2, 23
genpois, 24
gumbel, 25

hpgweibull (pgweibull), 33

invgauss, 26

laplace, 27

mvt, 28

nbinom2, 29

oibeta, 30
oibeta2, 31

PARETO, 32
pareto, 32
pbccg (bccg), 4
pbcpe (bcpe), 5
pbct (bct), 6
pbeta2 (beta2), 7
PE, 35
pexgauss (exgauss), 21
pfoldnorm (foldnorm), 22
pgamma2 (gamma2), 23

pgenpois (genpois), 24
pgumbel (gumbel), 25
pgweibull, 33
pinvgauss (invgauss), 26
plaplace (laplace), 27
plnorm (zilnorm), 56
pnbinom (nbinom2), 29
pnbinom2 (nbinom2), 29
poibeta (oibeta), 30
poibeta2 (oibeta2), 31
powerexp, 34
ppareto (pareto), 32
ppgweibull (pgweibull), 33
ppowerexp (powerexp), 34
ppowerexp2 (powerexp), 34
pskewnorm (skewnorm), 36
pskewnorm2 (skewnorm2), 37
pskewt (skewt), 38
pskewt2 (skewt2), 39
pst, 39, 40
pt (t2), 41
pt2 (t2), 41
ptruncnorm (truncnorm), 42
ptrunct (trunct), 43
ptrunct2 (trunct2), 44
pvm (vm), 45
pzibeta (zibeta), 50
pzibeta2 (zibeta2), 51
pzibinom (zibinom), 52
pzigamma (zigamma), 53
pzigamma2 (zigamma2), 54
pziinvgauss (ziinvgauss), 55
pzilnorm (zilnorm), 56
pzinbinom (zinbinom), 57
pzinbinom2 (zinbinom2), 58
pzipois (zipois), 59
pzoibeta (zoibeta), 60
pzoibeta2 (zoibeta2), 61
pztbinom (ztbinom), 62
pztnbinom (ztnbinom), 63
pztnbinom2 (ztnbinom2), 64
pztpois (ztpois), 65

qbccg (bccg), 4
qbcpe (bcpe), 5
qbct (bct), 6
qbeta2 (beta2), 7
qexgauss (exgauss), 21
qgamma2 (gamma2), 23

INDEX 69

qgenpois (genpois), 24
qgumbel (gumbel), 25
qinvgauss (invgauss), 26
qlaplace (laplace), 27
qnbinom2 (nbinom2), 29
qpareto (pareto), 32
qpgweibull (pgweibull), 33
qpowerexp (powerexp), 34
qpowerexp2 (powerexp), 34
qskewnorm (skewnorm), 36
qskewnorm2 (skewnorm2), 37
qskewt (skewt), 38
qskewt2 (skewt2), 39
qt2 (t2), 41
qtruncnorm (truncnorm), 42
qtrunct (trunct), 43
qtrunct2 (trunct2), 44

rbccg (bccg), 4
rbcpe (bcpe), 5
rbct (bct), 6
rbeta2 (beta2), 7
rbetabinom (betabinom), 8
rdirichlet (dirichlet), 17
rdirmult (dirmult), 18
rexgauss (exgauss), 21
rfoldnorm (foldnorm), 22
rgamma2 (gamma2), 23
rgenpois (genpois), 24
rgumbel (gumbel), 25
rinvgauss (invgauss), 26
rlaplace (laplace), 27
rmvt (mvt), 28
rnbinom2 (nbinom2), 29
roibeta (oibeta), 30
roibeta2 (oibeta2), 31
rpareto (pareto), 32
rpgweibull (pgweibull), 33
rpowerexp (powerexp), 34
rpowerexp2 (powerexp), 34
rskewnorm (skewnorm), 36
rskewnorm2 (skewnorm2), 37
rskewt (skewt), 38
rskewt2 (skewt2), 39
rt2 (t2), 41
rtruncnorm (truncnorm), 42
rtrunct (trunct), 43
rtrunct2 (trunct2), 44
rvm (vm), 45

rvmf (vmf), 46
rvmf2 (vmf2), 47
rwishart (wishart), 48
rwrpcauchy (wrpcauchy), 48
rzibeta (zibeta), 50
rzibeta2 (zibeta2), 51
rzibinom (zibinom), 52
rzigamma (zigamma), 53
rzigamma2 (zigamma2), 54
rziinvgauss (ziinvgauss), 55
rzilnorm (zilnorm), 56
rzinbinom (zinbinom), 57
rzinbinom2 (zinbinom2), 58
rzipois (zipois), 59
rzoibeta (zoibeta), 60
rzoibeta2 (zoibeta2), 61
rztbinom (ztbinom), 62
rztnbinom (ztnbinom), 63
rztnbinom2 (ztnbinom2), 64
rztpois (ztpois), 65

skewnorm, 36, 38, 39, 41
skewnorm2, 37, 37, 39, 41
skewt, 37, 38, 38, 41
skewt2, 37–39, 39
spgweibull (pgweibull), 33
ST2, 39, 40

t2, 41
truncnorm, 42
trunct, 43
trunct2, 44

vm, 45
vmf, 46
vmf2, 47

wishart, 48
wrpcauchy, 48

zero_inflate, 49
zibeta, 50
zibeta2, 51
zibinom, 52
zigamma, 53
zigamma2, 54
ziinvgauss, 55
zilnorm, 56
zinbinom, 57

70 INDEX

zinbinom2, 58
zipois, 59
zoibeta, 60
zoibeta2, 61
ztbinom, 62
ztnbinom, 63
ztnbinom2, 64
ztpois, 65

	abs_smooth
	bccg
	bcpe
	bct
	beta2
	betabinom
	cclayton
	cfrank
	cgaussian
	cgmrf
	cgumbel
	cmvgauss
	dcopula
	ddcopula
	dirichlet
	dirmult
	dmvcopula
	erf
	exgauss
	foldnorm
	gamma2
	genpois
	gumbel
	invgauss
	laplace
	mvt
	nbinom2
	oibeta
	oibeta2
	pareto
	pgweibull
	powerexp
	skewnorm
	skewnorm2
	skewt
	skewt2
	t2
	truncnorm
	trunct
	trunct2
	vm
	vmf
	vmf2
	wishart
	wrpcauchy
	zero_inflate
	zibeta
	zibeta2
	zibinom
	zigamma
	zigamma2
	ziinvgauss
	zilnorm
	zinbinom
	zinbinom2
	zipois
	zoibeta
	zoibeta2
	ztbinom
	ztnbinom
	ztnbinom2
	ztpois
	Index

