VIM: Visualization and Imputation of Missing Values

Provides methods for imputation and visualization of missing values. It includes graphical tools to explore the amount, structure and patterns of missing and/or imputed values, supporting exploratory data analysis and helping to investigate potential missingness mechanisms (details in Alfons, Templ and Filzmoser, <doi:10.1007/s11634-011-0102-y>. The quality of imputations can be assessed visually using a wide range of univariate, bivariate and multivariate plots. The package further provides several imputation methods, including efficient implementations of k-nearest neighbour and hot-deck imputation (Kowarik and Templ 2013, <doi:10.18637/jss.v074.i07>, iterative robust model-based multiple imputation (Templ 2011, <doi:10.1016/j.csda.2011.04.012>; Templ 2023, <doi:10.3390/math11122729>), and machine learning–based approaches such as robust GAM-based multiple imputation (Templ 2024, <doi:10.1007/s11222-024-10429-1>) as well as gradient boosting (XGBoost) and transformer-based methods (Niederhametner et al., <doi:10.1177/18747655251339401>). General background and practical guidance on imputation are provided in the Springer book by Templ (2023) <doi:10.1007/978-3-031-30073-8>.

Version: 7.0.0
Depends: R (≥ 4.1.0), colorspace, grid
Imports: car, grDevices, robustbase, stats, sp, vcd, nnet, e1071, methods, Rcpp, utils, graphics, laeken, ranger, MASS, xgboost, data.table (≥ 1.9.4), mlr3, mlr3pipelines, R6, paradox, mlr3tuning, mlr3learners, future
LinkingTo: Rcpp
Suggests: dplyr, tinytest, knitr, mgcv, rmarkdown, reactable, covr, withr, pdist, enetLTS, robmixglm, stringr, glmnet
Published: 2026-01-10
DOI: 10.32614/CRAN.package.VIM
Author: Matthias Templ [aut, cre], Alexander Kowarik ORCID iD [aut], Andreas Alfons [aut], Johannes Gussenbauer [aut], Nina Niederhametner [aut], Eileen Vattheuer [aut], Gregor de Cillia [aut], Bernd Prantner [ctb], Wolfgang Rannetbauer [aut]
Maintainer: Matthias Templ <matthias.templ at gmail.com>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/statistikat/VIM
NeedsCompilation: yes
Citation: VIM citation info
Materials: NEWS
In views: MissingData, OfficialStatistics
CRAN checks: VIM results [issues need fixing before 2026-01-12]

Documentation:

Reference manual: VIM.html , VIM.pdf
Vignettes: VIM (source, R code)
Supportive Graphic Methods (source, R code)
Donor based Imputation Methods (source, R code)
Imputation Method based on Iterative EM PCA (source, R code)
Imputation Method IRMI (source, R code)
Model based Imputation Methods (source, R code)
Imputation Method vimpute (source, R code)
Imputation Method based on xgboost (source, R code)

Downloads:

Package source: VIM_7.0.0.tar.gz
Windows binaries: r-devel: VIM_6.2.6.zip, r-release: VIM_6.2.6.zip, r-oldrel: VIM_6.2.6.zip
macOS binaries: r-release (arm64): VIM_6.2.6.tgz, r-oldrel (arm64): VIM_6.2.6.tgz, r-release (x86_64): VIM_6.2.6.tgz, r-oldrel (x86_64): VIM_6.2.6.tgz
Old sources: VIM archive

Reverse dependencies:

Reverse imports: destiny, FuzzyImputationTest, lfproQC, MAICtools, MIGEE, missCompare, MSPrep, onlineBcp, promor, qmtools, robCompositions, sdcMicro, simPop, simputation
Reverse suggests: clusterMI, DataFusionGDM, fastml, micemd, pandemonium

Linking:

Please use the canonical form https://CRAN.R-project.org/package=VIM to link to this page.