
Package ‘adelie’
July 1, 2025

Title Group Lasso and Elastic Net Solver for Generalized Linear Models

Version 1.0.8

Date 2025-06-28

Description Extremely efficient procedures for fitting the entire group lasso and group elastic net reg-
ularization path for GLMs, multinomial, the Cox model and multi-task Gaussian models. Simi-
lar to the R package 'glmnet' in scope of models, and in computational speed. This package pro-
vides R bindings to the C++ code underlying the corresponding Python pack-
age 'adelie'. These bindings offer a general purpose group elastic net solver,
a wide range of matrix classes that can exploit special structure
to allow large-scale inputs, and an assortment of
generalized linear model classes for fitting various types of data.
The package is an implementa-
tion of Yang, J. and Hastie, T. (2024) <doi:10.48550/arXiv.2405.08631>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

LinkingTo Rcpp, RcppEigen

SystemRequirements C++17

Imports Matrix, r2r, Rcpp, methods, stringr, utils

Suggests ggplot2, gridExtra, testthat (>= 3.0.0), knitr, rmarkdown

Config/testthat/edition 3

VignetteBuilder knitr

URL https://github.com/JamesYang007/adelie-r

BugReports https://github.com/JamesYang007/adelie-r/issues

NeedsCompilation yes

Author James Yang [aut, cph],
Trevor Hastie [aut, cph, cre],
Balasubramanian Narasimhan [aut]

Maintainer Trevor Hastie <hastie@stanford.edu>

Repository CRAN

Date/Publication 2025-07-01 17:50:06 UTC

1

https://doi.org/10.48550/arXiv.2405.08631
https://github.com/JamesYang007/adelie-r
https://github.com/JamesYang007/adelie-r/issues

2 Contents

Contents

constraint.box . 3
cv.glintnet . 4
cv.grpnet . 6
gaussian_cov . 9
glintnet . 11
glm.binomial . 13
glm.cox . 14
glm.gaussian . 15
glm.multigaussian . 16
glm.multinomial . 17
glm.poisson . 18
grpnet . 19
io.snp_phased_ancestry . 22
io.snp_unphased . 23
matrix.block_diag . 24
matrix.concatenate . 25
matrix.convex_relu . 26
matrix.dense . 27
matrix.eager_cov . 28
matrix.interaction . 28
matrix.kronecker_eye . 29
matrix.lazy_cov . 30
matrix.one_hot . 31
matrix.snp_phased_ancestry . 32
matrix.snp_unphased . 33
matrix.sparse . 34
matrix.standardize . 35
matrix.subset . 36
plot.cv.glintnet . 37
plot.grpnet . 38
predict.cv.glintnet . 40
predict.cv.grpnet . 41
predict.glintnet . 42
predict.grpnet . 44
print.cv.grpnet . 46
print.glintnet . 47
print.grpnet . 48
set_configs . 49

Index 50

constraint.box 3

constraint.box Create a box constraint for a group.

Description

A box constraint sets upper and lower bounds for coefficients in a model. This is done per group,
and this function is used separately to set the bounds for each group in the model. The con-
straints are returned as a list, with number of elements the number of groups. List entries can
be NULL, which means no constraints for that group. Currently works with single-response mod-
els (so glm.multinomial and glm.multigaussian are excluded). Note that for each group for
which non-null constraints are provide, a separate call to constraint.box() must be made (i.e.
the constraint object cannot be replicated). See the second example below.

Usage

constraint.box(lower, upper, max_iters = 100, tol = 1e-09)

Arguments

lower lower bound for each coefficient in the group. If the group has m variables, this
should be a vector of length m. Values can be -Inf.

upper upper bound for each coefficient in the group. If the group has m variables, this
should be a vector of length m. Values can be Inf.

max_iters maximum number of proximal Newton iterations; default is 100.
tol convergence tolerance for proximal Newton; default is 1e-9.

Value

Box constraint object.

Author(s)

Trevor Hastie and James Yang
Maintainer: Trevor Hastie hastie@stanford.edu

Examples

Group of length 10, with positivity constraint on all the coefficients.
lower <- rep(0,10)
upper <- rep(Inf,10)
cont <- constraint.box(lower = lower, upper = upper)

10 singleton groups, and non-negativity constraints on all parameters.
cont <- lapply(1:10, function(i)constraint.box(lower = 0, upper = Inf))

Same as above, but non-negativity constraints only on first 5 parameters.
cont <- lapply(1:5, function(i)constraint.box(lower = 0, upper = Inf))
cont <- c(cont, rep(list(NULL), 5)) # rep rule does not apply to NULL

mailto:hastie@stanford.edu

4 cv.glintnet

cv.glintnet Cross-validation for glintnet

Description

Does k-fold cross-validation for glintnet

Usage

cv.glintnet(
X,
glm,
offsets = NULL,
intr_keys = NULL,
intr_values,
levels = NULL,
n_folds = 10,
foldid = NULL,
n_threads = 1,
...

)

Arguments

X Feature matrix. Either a regular R matrix, or else an adelie custom matrix
class, or a concatination of such.

glm GLM family/response object. This is an expression that represents the fam-
ily, the reponse and other arguments such as weights, if present. The choices are
glm.gaussian(), glm.binomial(), glm.poisson(), glm.multinomial(), glm.cox(),
glm.multinomial(), and glm.multigaussian(). This is a required argument,
and there is no default. In the simple example below, we use glm.gaussian(y).

offsets Offsets, default is NULL. If present, this is a fixed vector or matrix corresponding
to the shape of the natural parameter, and is added to the fit.

intr_keys List of feature indices. This is a list of all features with which interactions can
be formed. Default is 1:p where p is the number of columns in X.

intr_values List of integer vectors of feature indices. For each of the m <= p indices listed in
intr_keys, there is a vector of indices indicating which columns are candidates
for interaction with that feature. If a vector is NULL, that means all other features
are candidates for interactions. The default is a list of length m where each
element is NULL; that is rep(list(NULL), m.

levels Number of levels for each of the columns of mat, with 1 representing a quan-
titative feature. A factor with K levels should be represented by the numbers
0,1,...,K-1.

n_folds (default 10). Although n_folds can be as large as the sample size (leave-one-
out CV), it is not recommended for large datasets. Smallest value allowable is
n_folds=3.

cv.glintnet 5

foldid An optional vector of values between 1 and n_folds identifying what fold each
observation is in. If supplied, n_folds can be missing.

n_threads Number of threads, default 1.

... Additional named arguments to grpnet.

Details

The function runs glintnet n_folds+1 times; the first to get the lambda sequence, and then the
remainder to compute the fit with each of the folds omitted. The out-of-fold deviance is accu-
mulated, and the average deviance and standard deviation over the folds is computed. Note that
cv.glintnet does NOT search for values for alpha. A specific value should be supplied, else
alpha=1 is assumed by default. If users would like to cross-validate alpha as well, they should call
cv.glintnet with a pre-computed vector foldid, and then use this same foldid vector in sepa-
rate calls to cv.glintnet with different values of alpha. Note also that the results of cv.glintnet
are random, since the folds are selected at random. Users can reduce this randomness by running
cv.glintnet many times, and averaging the error curves.

Value

A list of class "glintnet", which inherits from class "grpnet". This has a a few additional compo-
nents such as pairs, groups and levels. Users typically use methods like predict(), print(),
plot() etc to examine the object.

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie <hastie@stanford.edu>

References

Lim, Michael and Hastie, Trevor (2015) Learning interactions via hierarchical group-lasso regu-
larization, JCGS doi:10.1080/10618600.2014.938812
Yang, James and Hastie, Trevor. (2024) A Fast and Scalable Pathwise-Solver for Group Lasso and
Elastic Net Penalized Regression via Block-Coordinate Descent. arXiv doi:10.48550/arXiv.2405.08631.
Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Mod-
els via Coordinate Descent (2010), Journal of Statistical Software, Vol. 33(1), 1-22, doi:10.18637/
jss.v033.i01.
Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2011) Regularization Paths for Cox’s Pro-
portional Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol. 39(5), 1-13,
doi:10.18637/jss.v039.i05.
Tibshirani,Robert, Bien, J., Friedman, J., Hastie, T.,Simon, N.,Taylor, J. and Tibshirani, Ryan.
(2012) Strong Rules for Discarding Predictors in Lasso-type Problems, JRSSB, Vol. 74(2), 245-
266, https://arxiv.org/abs/1011.2234.

See Also

cv.glintnet, predict.glintnet, plot.glintnet, print.glintnet.

https://doi.org/10.1080/10618600.2014.938812
https://doi.org/10.48550/arXiv.2405.08631
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v039.i05
https://arxiv.org/abs/1011.2234

6 cv.grpnet

Examples

set.seed(0)
n=500
d_cont = 5 # number of continuous features
d_disc = 5 # number of categorical features
Z_cont = matrix(rnorm(n*d_cont), n, d_cont)
levels = sample(2:5,d_disc, replace = TRUE)
Z_disc = matrix(0,n,d_disc)
for(i in seq(d_disc))Z_disc[,i] = sample(0:(levels[i]-1),n,replace=TRUE)
Z = cbind(Z_cont,Z_disc)
levels = c(rep(1,d_cont),levels)

xmat = model.matrix(~Z_cont[,1]*factor(Z_disc[,2]))
nc=ncol(xmat)
beta = rnorm(nc)
y = xmat%*%beta+rnorm(n)*1.5

cvfit <- cv.glintnet(Z, glm.gaussian(y), levels=levels, intr_keys = 1)
plot(cvfit)
predict(cvfit, newx=Z[1:5,])

cv.grpnet Cross-validation for grpnet

Description

Does k-fold cross-validation for grpnet

Usage

cv.grpnet(
X,
glm,
n_folds = 10,
foldid = NULL,
min_ratio = 0.01,
lmda_path_size = 100,
offsets = NULL,
progress_bar = FALSE,
n_threads = 1,
...

)

Arguments

X Feature matrix. Either a regualr R matrix, or else an adelie custom matrix
class, or a concatination of such.

cv.grpnet 7

glm GLM family/response object. This is an expression that represents the fam-
ily, the reponse and other arguments such as weights, if present. The choices are
glm.gaussian(), glm.binomial(), glm.poisson(), glm.multinomial(), glm.cox(),
glm.multinomial(), and glm.multigaussian(). This is a required argument,
and there is no default. In the simple example below, we use glm.gaussian(y).

n_folds (default 10). Although n_folds can be as large as the sample size (leave-one-
out CV), it is not recommended for large datasets. Smallest value allowable is
n_folds=3.

foldid An optional vector of values between 1 and n_folds identifying what fold each
observation is in. If supplied, n_folds can be missing.

min_ratio Ratio between smallest and largest value of lambda. Default is 1e-2.

lmda_path_size Number of values for lambda, if generated automatically. Default is 100.

offsets Offsets, default is NULL. If present, this is a fixed vector or matrix corresponding
to the shape of the natural parameter, and is added to the fit.

progress_bar Progress bar. Default is FALSE.

n_threads Number of threads, default 1.

... Other arguments that can be passed to grpnet

Details

The function runs grpnet n_folds+1 times; the first to get the lambda sequence, and then the
remainder to compute the fit with each of the folds omitted. The out-of-fold deviance is accu-
mulated, and the average deviance and standard deviation over the folds is computed. Note that
cv.grpnet does NOT search for values for alpha. A specific value should be supplied, else alpha
= 1 is assumed by default. If users would like to cross-validate alpha as well, they should call
cv.grpnet with a pre-computed vector foldid, and then use this same foldid vector in separate
calls to cv.grpnet with different values of alpha. Note also that the results of cv.grpnet are
random, since the folds are selected at random (unless supplied via foldid). Users can reduce this
randomness by running cv.grpnet many times, and averaging the error curves.

Value

an object of class "cv.grpnet" is returned, which is a list with the ingredients of the cross-
validation fit.

lambda the values of lambda used in the fits.

cvm The mean cross-validated deviance - a vector of length length(lambda).

cvsd estimate of standard error of cvm.

cvup upper curve = cvm+cvsd.

cvlo lower curve = cvm-cvsd.

nzero number of non-zero coefficients at each lambda.

name a text string indicating type of measure (for plotting purposes). Currently this is
"deviance"

grpnet.fit a fitted grpnet object for the full data.

8 cv.grpnet

lambda.min value of lambda that gives minimum cvm.

lambda.1se largest value of lambda such that mean deviance is within 1 standard error of
the minimum.

index a one column matrix with the indices of lambda.min and lambda.1se in the
sequence of coefficients, fits etc.

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie <hastie@stanford.edu>

References

Yang, James and Hastie, Trevor. (2024) A Fast and Scalable Pathwise-Solver for Group Lasso and
Elastic Net Penalized Regression via Block-Coordinate Descent. arXiv doi:10.48550/arXiv.2405.08631.
Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Mod-
els via Coordinate Descent (2010), Journal of Statistical Software, Vol. 33(1), 1-22, doi:10.18637/
jss.v033.i01.
Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2011) Regularization Paths for Cox’s Pro-
portional Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol. 39(5), 1-13,
doi:10.18637/jss.v039.i05.
Tibshirani,Robert, Bien, J., Friedman, J., Hastie, T.,Simon, N.,Taylor, J. and Tibshirani, Ryan.
(2012) Strong Rules for Discarding Predictors in Lasso-type Problems, JRSSB, Vol. 74(2), 245-
266, https://arxiv.org/abs/1011.2234.

See Also

print.cv.grpnet, predict.cv.grpnet, coef.cv.grpnet, plot.cv.grpnet.

Examples

set.seed(0)
n <- 100
p <- 200
X <- matrix(rnorm(n * p), n, p)
y <- X[,1:25] %*% rnorm(25)/4 + rnorm(n)
groups <- c(1, sample(2:199, 60, replace = FALSE))
groups <- sort(groups)
cvfit <- cv.grpnet(X, glm.gaussian(y), groups = groups)
print(cvfit)
plot(cvfit)
predict(cvfit, newx = X[1:5,])
predict(cvfit, type = "nonzero")

https://doi.org/10.48550/arXiv.2405.08631
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v039.i05
https://arxiv.org/abs/1011.2234

gaussian_cov 9

gaussian_cov Solves group elastic net via covariance method.

Description

Solves group elastic net via covariance method.

Usage

gaussian_cov(
A,
v,
constraints = NULL,
groups = NULL,
alpha = 1,
penalty = NULL,
lmda_path = NULL,
max_iters = as.integer(1e+05),
tol = 1e-07,
rdev_tol = 0.001,
newton_tol = 1e-12,
newton_max_iters = 1000,
n_threads = 1,
early_exit = TRUE,
screen_rule = "pivot",
min_ratio = 0.01,
lmda_path_size = 100,
max_screen_size = NULL,
max_active_size = NULL,
pivot_subset_ratio = 0.1,
pivot_subset_min = 1,
pivot_slack_ratio = 1.25,
check_state = FALSE,
progress_bar = FALSE,
warm_start = NULL

)

Arguments

A Positive semi-definite matrix.

v Linear term.

constraints Constraints.

groups Groups.

alpha Elastic net parameter.

penalty Penalty factor.

10 gaussian_cov

lmda_path The regularization path.

max_iters Maximum number of coordinate descents.

tol Coordinate descent convergence tolerance.

rdev_tol Relative percent deviance explained tolerance.

newton_tol Convergence tolerance for the BCD update.
newton_max_iters

Maximum number of iterations for the BCD update.

n_threads Number of threads.

early_exit TRUE if the function should exit early.

screen_rule Screen rule (currently the only value is the default "pivot".

min_ratio Ratio between largest and smallest regularization parameter, default is 0.01.

lmda_path_size Number of regularization steps in the path, default is 100.
max_screen_size

Maximum number of screen groups, default is NULL for no maximum.
max_active_size

Maximum number of active groups, default is NULL for no maximum.
pivot_subset_ratio

Subset ratio of pivot rule, default is 0.1.
pivot_subset_min

Minimum subset of pivot rule, default is 1.
pivot_slack_ratio

Slack ratio of pivot rule, default is 1.25.

check_state Check state, default is FALSE.

progress_bar Progress bar, default is FALSE.

warm_start Warm start, default is NULL (no warm start).

Value

State of the solver.

Examples

set.seed(0)
n <- 100
p <- 200
X <- matrix(rnorm(n * p), n, p)
y <- X[,1] * rnorm(1) + rnorm(n)
A <- t(X) %*% X / n
v <- t(X) %*% y / n
state <- gaussian_cov(A, v)

glintnet 11

glintnet fit a GLM interaction model with group lasso or group elastic-net reg-
ularization

Description

This function is an implementation of the glinternet model of Lim and Hastie, for fitting interac-
tions between pairs of variables in a model. The method creates interaction matrices and enforces
hierarchy using the overlap group lasso. Once the augmented model matrix is set up, glintnet
uses grpnet to fit the overlap group lasso path. It hence inherits all the capabilities of grpnet, and
in particular can fit interaction models for all the GLM families.

Usage

glintnet(
X,
glm,
offsets = NULL,
intr_keys = NULL,
intr_values,
levels = NULL,
n_threads = 1,
save.X = FALSE,
...

)

Arguments

X A dense matrix, which can include factors with levels coded as non-negative
integers starting at 0.

glm GLM family/response object. This is an expression that represents the fam-
ily, the reponse and other arguments such as weights, if present. The choices are
glm.gaussian(), glm.binomial(), glm.poisson(), glm.multinomial(), glm.cox(),
glm.multinomial(), and glm.multigaussian(). This is a required argument,
and there is no default. In the simple example below, we use glm.gaussian(y).

offsets Offsets, default is NULL. If present, this is a fixed vector or matrix corresponding
to the shape of the natural parameter, and is added to the fit.

intr_keys List of feature indices. This is a list of all features with which interactions can
be formed. Default is 1:p where p is the number of columns in X.

intr_values List of integer vectors of feature indices. For each of the m <= p indices listed in
intr_keys, there is a vector of indices indicating which columns are candidates
for interaction with that feature. If a vector is NULL, that means all other features
are candidates for interactions. The default is a list of length m where each
element is NULL; that is rep(list(NULL), m.

12 glintnet

levels Number of levels for each of the columns of mat, with 1 representing a quan-
titative feature. A factor with K levels should be represented by the numbers
0,1,...,K-1.

n_threads Number of threads, default 1.

save.X Logical flag, default FALSE. If TRUE, the internally constructed X matrix is re-
turned.

... Additional named arguments to grpnet.

Details

The input matrix can be composed of quantitative variables or columns representing factors. The
argument levels indicates which are quantitative, and which are factors. The later are represented
by numbers starting at 0, up to one less than the number of levels (sorry!) Each of the factors
are converted to "one-hot" matrices, and hence a group of columns are created for each of these.
This is done using the matrix utility function matrix.one_hot(). In addition interaction matrices
are created. For each pair of variables for which an interaction is considered, a matrix is created
consisting of the cross-product of each of the constituent matrices, as described in the "glinternet"
reference. Once this much bigger matrix is established, the model is handed to grpnet to produce
the fit.

Value

A list of class "glintnet", which inherits from class "grpnet". This has a a few additional compo-
nents such as pairs, groups and levels. Users typically use methods like predict(), print(),
plot() etc to examine the object.

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie <hastie@stanford.edu>

References

Lim, Michael and Hastie, Trevor (2015) Learning interactions via hierarchical group-lasso regu-
larization, JCGS doi:10.1080/10618600.2014.938812
Yang, James and Hastie, Trevor. (2024) A Fast and Scalable Pathwise-Solver for Group Lasso and
Elastic Net Penalized Regression via Block-Coordinate Descent. arXiv doi:10.48550/arXiv.2405.08631.
Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Mod-
els via Coordinate Descent (2010), Journal of Statistical Software, Vol. 33(1), 1-22, doi:10.18637/
jss.v033.i01.
Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2011) Regularization Paths for Cox’s Pro-
portional Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol. 39(5), 1-13,
doi:10.18637/jss.v039.i05.
Tibshirani,Robert, Bien, J., Friedman, J., Hastie, T.,Simon, N.,Taylor, J. and Tibshirani, Ryan.
(2012) Strong Rules for Discarding Predictors in Lasso-type Problems, JRSSB, Vol. 74(2), 245-
266, https://arxiv.org/abs/1011.2234.

https://doi.org/10.1080/10618600.2014.938812
https://doi.org/10.48550/arXiv.2405.08631
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v039.i05
https://arxiv.org/abs/1011.2234

glm.binomial 13

See Also

cv.glintnet, predict.glintnet, plot.glintnet, print.glintnet.

Examples

set.seed(0)
n=500
d_cont = 5 # number of continuous features
d_disc = 5 # number of categorical features
Z_cont = matrix(rnorm(n*d_cont), n, d_cont)
levels = sample(2:5,d_disc, replace = TRUE)
Z_disc = matrix(0,n,d_disc)
for(i in seq(d_disc))Z_disc[,i] = sample(0:(levels[i]-1),n,replace=TRUE)
Z = cbind(Z_cont,Z_disc)
levels = c(rep(1,d_cont),levels)

xmat = model.matrix(~Z_cont[,1]*factor(Z_disc[,2]))
nc=ncol(xmat)
beta = rnorm(nc)
y = xmat%*%beta+rnorm(n)*1.5

fit <- glintnet(Z, glm.gaussian(y), levels=levels, intr_keys = 1)
print(fit)

glm.binomial Creates a Binomial GLM family object.

Description

A GLM family object specifies the type of model fit, provides the appropriate response object
and makes sure it is represented in the right form for the model family, and allows for optional
parameters such as a weight vector.

Usage

glm.binomial(y, weights = NULL, link = "logit")

Arguments

y Binary response vector, with values 0 or 1, or a logical vector. Alternatively,
if data are represented by a two-column matrix of proportions (with row-sums
= 1), then one can provide one of the columns as the response. This is useful
for grouped binomial data, where each observation represents the result of m[i]
successes out of n[i] trials. Then the response is provided as y[i] = m[i]/n[i]
and the corresponding element of the weight vector as w[i]=n[i]. Alternatively
can use glm.multinomial() instead.

14 glm.cox

weights Observation weight vector, with default NULL, which results in weight 1/n for
each observation.

link The link function type, with choice "logit" (default) or "probit").

Value

Binomial GLM object.

Author(s)

Trevor Hastie and James Yang
Maintainer: Trevor Hastie hastie@stanford.edu

See Also

glm.gaussian, glm.binomial, glm.poisson, glm.multinomial, glm.multigaussian, glm.cox.

Examples

n <- 100
y <- rbinom(n, 1, 0.5)
obj <- glm.binomial(y)

glm.cox Creates a Cox GLM family object.

Description

A GLM family object specifies the type of model fit, provides the appropriate response object
and makes sure it is represented in the right form for the model family, and allows for optional
parameters such as a weight vector.

Usage

glm.cox(
stop,
status,
start = -Inf,
strata = NULL,
weights = NULL,
tie_method = c("efron", "breslow")

)

mailto:hastie@stanford.edu

glm.gaussian 15

Arguments

stop Stop time vector.

status Binary status vector of same length as stop, with 1 a "death", and 0 censored.

start Start time vector. Default is a vector of -Inf of same length as stop.

strata Observations can belong in strata, labeled 1,2, If strata = NULL then all
observations are in a single stratum.

weights Observation weights, with default NULL.

tie_method The tie-breaking method - one of "efron" (default) or "breslow".

Value

Cox GLM object.

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie hastie@stanford.edu

See Also

glm.gaussian, glm.binomial, glm.poisson, glm.multinomial, glm.multigaussian, glm.cox.

Examples

n <- 100
start <- sample.int(20, size = n, replace = TRUE)
stop <- start + 1 + sample.int(5, size = n, replace = TRUE)
status <- rbinom(n, 1, 0.5)
strata <- sample(c(1,2), n, replace = TRUE)
obj1 <- glm.cox(stop, status)
obj2 <- glm.cox(stop, status, start = start)
obj3 <- glm.cox(stop, status, start = start, strata = strata)

glm.gaussian Creates a Gaussian GLM family object.

Description

A GLM family object specifies the type of model fit, provides the appropriate response object
and makes sure it is represented in the right form for the model family, and allows for optional
parameters such as a weight vector.

Usage

glm.gaussian(y, weights = NULL, opt = TRUE)

mailto:hastie@stanford.edu

16 glm.multigaussian

Arguments

y Response vector.

weights Observation weight vector, with default NULL.

opt If TRUE (default), an optimized routine is run.

Value

Gaussian GLM

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie hastie@stanford.edu

See Also

glm.gaussian, glm.binomial, glm.poisson, glm.multinomial, glm.multigaussian, glm.cox.

Examples

n <- 100
y <- rnorm(n)
obj <- glm.gaussian(y)

glm.multigaussian Creates a MultiGaussian GLM family object.

Description

A GLM family object specifies the type of model fit, provides the appropriate response object
and makes sure it is represented in the right form for the model family, and allows for optional
parameters such as a weight vector.

Usage

glm.multigaussian(y, weights = NULL, opt = TRUE)

Arguments

y Response matrix, with two or more columns.

weights Observation weight vector, with default NULL.

opt If TRUE (default), an optimized routine is run.

Value

MultiGaussian GLM object.

mailto:hastie@stanford.edu

glm.multinomial 17

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie hastie@stanford.edu

See Also

glm.gaussian, glm.binomial, glm.poisson, glm.multinomial, glm.multigaussian, glm.cox.

Examples

n <- 100
K <- 5
y <- matrix(rnorm(n*K), n, K)
obj <- glm.multigaussian(y)

glm.multinomial Creates a Multinomial GLM family object.

Description

A GLM family object specifies the type of model fit, provides the appropriate response object
and makes sure it is represented in the right form for the model family, and allows for optional
parameters such as a weight vector.

Usage

glm.multinomial(y, weights = NULL)

Arguments

y Response matrix with K>1 columns, and row sums equal to 1. This can either be
a "one-hot" encoded version of a K-category factor variable, or else a matrix of
proportions. This is useful for grouped multinomial data, where column y[i,
k] represents the proportion of outcomes in category k in n[i] trials. Then the
corresponding element of the weight vector is w[i]=n[i].

weights Observation weights.

Value

Multinomial GLM object.

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie hastie@stanford.edu

mailto:hastie@stanford.edu
mailto:hastie@stanford.edu

18 glm.poisson

See Also

glm.gaussian, glm.binomial, glm.poisson, glm.multinomial, glm.multigaussian, glm.cox.

Examples

n <- 100
K <- 5
y <- t(rmultinom(n, 1, rep(1/K, K)))
obj <- glm.multinomial(y)

glm.poisson Creates a Poisson GLM family object.

Description

A GLM family object specifies the type of model fit, provides the appropriate response object
and makes sure it is represented in the right form for the model family, and allows for optional
parameters such as a weight vector.

Usage

glm.poisson(y, weights = NULL)

Arguments

y Response vector of non-negative counts.

weights Observation weight vector, with default NULL.

Value

Poisson GLM object.

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie hastie@stanford.edu

See Also

glm.gaussian, glm.binomial, glm.poisson, glm.multinomial, glm.multigaussian, glm.cox.

Examples

n <- 100
y <- rpois(n, 1)
obj <- glm.poisson(y)

mailto:hastie@stanford.edu

grpnet 19

grpnet fit a GLM with group lasso or group elastic-net regularization

Description

Computes a group elastic-net regularization path for a variety of GLM and other families, including
the Cox model. This function extends the abilities of the glmnet package to allow for grouped reg-
ularization. The code is very efficient (core routines are written in C++), and allows for specialized
matrix classes.

Usage

grpnet(
X,
glm,
constraints = NULL,
groups = NULL,
alpha = 1,
penalty = NULL,
offsets = NULL,
lambda = NULL,
standardize = TRUE,
irls_max_iters = as.integer(10000),
irls_tol = 1e-07,
max_iters = as.integer(1e+05),
tol = 1e-07,
adev_tol = 0.9,
ddev_tol = 0,
newton_tol = 1e-12,
newton_max_iters = 1000,
n_threads = 1,
early_exit = TRUE,
intercept = TRUE,
screen_rule = c("pivot", "strong"),
min_ratio = 0.01,
lmda_path_size = 100,
max_screen_size = NULL,
max_active_size = NULL,
pivot_subset_ratio = 0.1,
pivot_subset_min = 1,
pivot_slack_ratio = 1.25,
check_state = FALSE,
progress_bar = FALSE,
warm_start = NULL

)

20 grpnet

Arguments

X Feature matrix. Either a regular R matrix, or else an adelie custom matrix
class, or a concatination of such.

glm GLM family/response object. This is an expression that represents the fam-
ily, the reponse and other arguments such as weights, if present. The choices are
glm.gaussian(), glm.binomial(), glm.poisson(), glm.multinomial(), glm.cox(),
glm.multinomial(), and glm.multigaussian(). This is a required argument,
and there is no default. In the simple example below, we use glm.gaussian(y).

constraints Group-wise constraints on the parameters, supplied as a list with an element
for each group. Default is NULL, which means no constraints. List elements
can be NULL as well. Currently only ’box constraints’ are supported, which
means upper and lower limits. The function constraint.box() must be used
to set the constraints for each group that has constraints. Details are given in the
documentation for constraint.box.

groups This is an ordered vector of integers that represents the groupings, with each
entry indicating where a group begins. The entries refer to column numbers in
the feature matrix, and hence the memebers of a group have to be contiguous. If
there are p features, the default is 1:p (no groups; i.e. p groups each of of size
1). So the length of groups is the number of groups. (Note that in the state
output of grpnet this vector might be shifted to start from 0, since internally
adelie uses zero-based indexing.)

alpha The elasticnet mixing parameter, with 0 ≤ α ≤ 1. The penalty is defined as

(1− α)/2
∑
j

||βj ||22 + α
∑
j

||βj ||2,

where thte sum is over groups. alpha=1 is pure group lasso penalty, and alpha=0
the pure ridge penalty.

penalty Separate penalty factors can be applied to each group of coefficients. This is a
number that multiplies lambda to allow differential shrinkage for groups. Can
be 0 for some groups, which implies no shrinkage, and that group is always
included in the model. Default is square-root of group sizes for each group.

offsets Offsets, default is NULL. If present, this is a fixed vector or matrix corresponding
to the shape of the natural parameter, and is added to the fit.

lambda A user supplied lambda sequence. Typical usage is to have the program compute
its own lambda sequence based on lmda_path_size and min_ratio. This is
returned with the fit.

standardize If TRUE (the default), the columns of X are standardized before the fit is com-
puted. This is good practice if the features are on different scales, because it
has an impact on the penalty. The regularization path is computed using the
standardized features, and the standardization information is saved on the ob-
ject for making future predictions. The different matrix classes have their own
methods for standardization. For example, for a sparse matrix the standardiza-
tion information will be computed, but not actually applied (eg centering would
destroy the sparsity). Rather, the methods for matrix multiply will be aware, and
incorporate the standardization information.

grpnet 21

irls_max_iters Maximum number of IRLS iterations, default is 1e4.

irls_tol IRLS convergence tolerance, default is 1e-7.

max_iters Maximum total number of coordinate descent iterations, default is 1e5.

tol Coordinate descent convergence tolerance, default 1e-7.

adev_tol Fraction deviance explained tolerance, default 0.9. This can be seen as a limit
on overfitting the training data.

ddev_tol Difference in fraction deviance explained tolerance, default 0. If a step in the
path changes the deviance by this amount or less, the algorithm truncates the
path.

newton_tol Convergence tolerance for the BCD update, default 1e-12. This parameter con-
trols the iterations in each block-coordinate step to establish the block solution.

newton_max_iters

Maximum number of iterations for the BCD update, default 1000.

n_threads Number of threads, default 1.

early_exit TRUE if the function should be allowed to exit early.

intercept Default TRUE to include an unpenalized intercept.

screen_rule Screen rule, with default "pivot". Other option is "strong". (an empirical
improvement over "strong", the other option.)

min_ratio Ratio between smallest and largest value of lambda. Default is 1e-2.

lmda_path_size Number of values for lambda, if generated automatically. Default is 100.
max_screen_size

Maximum number of screen groups. Default is NULL.
max_active_size

Maximum number of active groups. Default is NULL.
pivot_subset_ratio

Subset ratio of pivot rule. Default is 0.1. Users not expected to fiddle with this.
pivot_subset_min

Minimum subset of pivot rule. Defaults is 1. Users not expected to fiddle with
this.

pivot_slack_ratio

Slack ratio of pivot rule, default is 1.25. Users not expected to fiddle with this.
See reference for details.

check_state Check state. Internal parameter, with default FALSE.

progress_bar Progress bar. Default is FALSE.

warm_start Warm start (default is NULL). Internal parameter.

Value

A list of class "grpnet". This has a main component called state which represents the fitted path,
and a few extra useful components such as the call, the family name, groups and group_sizes.
Users are encouraged to use methods like predict(), coef(), print(), plot() etc to examine the
object.

22 io.snp_phased_ancestry

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie <hastie@stanford.edu>

References

Yang, James and Hastie, Trevor. (2024) A Fast and Scalable Pathwise-Solver for Group Lasso and
Elastic Net Penalized Regression via Block-Coordinate Descent. arXiv doi:10.48550/arXiv.2405.08631.
Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Mod-
els via Coordinate Descent (2010), Journal of Statistical Software, Vol. 33(1), 1-22, doi:10.18637/
jss.v033.i01.
Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2011) Regularization Paths for Cox’s Pro-
portional Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol. 39(5), 1-13,
doi:10.18637/jss.v039.i05.
Tibshirani,Robert, Bien, J., Friedman, J., Hastie, T.,Simon, N., Taylor, J. and Tibshirani, Ryan.
(2012) Strong Rules for Discarding Predictors in Lasso-type Problems, JRSSB, Vol. 74(2), 245-
266, https://arxiv.org/abs/1011.2234.

See Also

cv.grpnet, predict.grpnet, coef.grpnet, plot.grpnet, print.grpnet.

Examples

set.seed(0)
n <- 100
p <- 200
X <- matrix(rnorm(n * p), n, p)
y <- X[,1] * rnorm(1) + rnorm(n)
Here we create 60 groups randomly. Groups need to be contiguous, and the `groups` variable
indicates the beginning position of each group.
groups <- c(1, sample(2:199, 60, replace = FALSE))
groups <- sort(groups)
print(groups)
fit <- grpnet(X, glm.gaussian(y), groups = groups)
print(fit)
plot(fit)
coef(fit)
cvfit <- cv.grpnet(X, glm.gaussian(y), groups = groups)
print(cvfit)
plot(cvfit)
predict(cvfit,newx=X[1:5,], lambda="lambda.min")

io.snp_phased_ancestry

IO handler for SNP phased, ancestry matrix.

https://doi.org/10.48550/arXiv.2405.08631
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v039.i05
https://arxiv.org/abs/1011.2234

io.snp_unphased 23

Description

IO handler for SNP phased, ancestry matrix.

Usage

io.snp_phased_ancestry(filename, read_mode = "file")

Arguments

filename File name.

read_mode Reading mode.

Value

IO handler for SNP phased, ancestry data.

Examples

n <- 123
s <- 423
A <- 8
filename <- paste(tempdir(), "snp_phased_ancestry_dummy.snpdat", sep="/")
handle <- io.snp_phased_ancestry(filename)
calldata <- matrix(

as.integer(sample.int(
2, n * s * 2,
replace=TRUE,
prob=c(0.7, 0.3)

) - 1),
n, s * 2

)
ancestries <- matrix(

as.integer(sample.int(
A, n * s * 2,
replace=TRUE,
prob=rep_len(1/A, A)

) - 1),
n, s * 2

)
handle$write(calldata, ancestries, A, 1)
handle$read()
file.remove(filename)

io.snp_unphased IO handler for SNP unphased matrix.

Description

IO handler for SNP unphased matrix.

24 matrix.block_diag

Usage

io.snp_unphased(filename, read_mode = "file")

Arguments

filename File name.

read_mode Reading mode.

Value

IO handler for SNP unphased data.

Examples

n <- 123
s <- 423
filename <- paste(tempdir(), "snp_unphased_dummy.snpdat", sep="/")
handle <- io.snp_unphased(filename)
mat <- matrix(

as.integer(sample.int(
3, n * s,
replace=TRUE,
prob=c(0.7, 0.2, 0.1)

) - 1),
n, s

)
impute <- double(s)
handle$write(mat, "mean", impute, 1)
handle$read()
file.remove(filename)

matrix.block_diag Creates a block-diagonal matrix.

Description

Creates a block-diagonal matrix.

Usage

matrix.block_diag(mats, method = c("naive", "cov"), n_threads = 1)

Arguments

mats List of matrices.

method Method type, with default method="naive".

n_threads Number of threads.

matrix.concatenate 25

Value

Block-diagonal matrix.

Author(s)

Trevor Hastie and James Yang
Maintainer: Trevor Hastie hastie@stanford.edu

Examples

n <- 100
ps <- c(10, 20, 30)
mats <- lapply(ps, function(p) {

X <- matrix(rnorm(n * p), n, p)
matrix.dense(t(X) %*% X, method="cov")

})
out <- matrix.block_diag(mats, method="cov")
mats <- lapply(ps, function(p) {

X <- matrix(rnorm(n * p), n, p)
matrix.dense(X, method="naive")

})
out <- matrix.block_diag(mats, method="naive")

matrix.concatenate Creates a concatenation of the matrices.

Description

Creates a concatenation of the matrices.

Usage

matrix.concatenate(mats, axis = 2, n_threads = 1)

Arguments

mats List of matrices.

axis The axis along which the matrices will be joined. With axis = 2 (default) this
function is equivalent to cbind() and axis = 1 is equivalent to rbind().

n_threads Number of threads.

Value

Concatenation of matrices. The object is an S4 class with methods for efficient computation in C++
by adelie. Note that for the object itself axis is represented with base 0 (so 1 less than the argument
here).

mailto:hastie@stanford.edu

26 matrix.convex_relu

Author(s)

Trevor Hastie and James Yang
Maintainer: Trevor Hastie hastie@stanford.edu

Examples

n <- 100
ps <- c(10, 20, 30)
n <- 100
mats <- lapply(ps, function(p) {

matrix.dense(matrix(rnorm(n * p), n, p))
})
out <- matrix.concatenate(mats, axis=2)

matrix.convex_relu Creates a feature matrix for the convex relu problem.

Description

Creates a feature matrix for the convex relu problem.

Usage

matrix.convex_relu(mat, mask, gated = FALSE, n_threads = 1)

Arguments

mat Base feature matrix. It is either a dense or sparse matrix.

mask Boolean mask matrix.

gated Flag to indicate whether to use the convex gated relu feature matrix.

n_threads Number of threads.

Value

Convex relu feature matrix. The object is an S4 class with methods for efficient computation in C++
by adelie.

Author(s)

Trevor Hastie and James Yang
Maintainer: Trevor Hastie hastie@stanford.edu

mailto:hastie@stanford.edu
mailto:hastie@stanford.edu

matrix.dense 27

Examples

n <- 100
p <- 20
m <- 10
Z_dense <- matrix(rnorm(n * p), n, p)
mask <- matrix(rbinom(n * m, 1, 0.5), n, m)
out <- matrix.convex_relu(Z_dense, mask)
Z_sparse <- as(Z_dense, "dgCMatrix")
out <- matrix.convex_relu(Z_sparse, mask)

matrix.dense Creates a dense matrix object.

Description

Creates a dense matrix object.

Usage

matrix.dense(mat, method = c("naive", "cov", "constraint"), n_threads = 1)

Arguments

mat The dense matrix.

method Method type, with default method="naive". If method="cov", the matrix is
used with the solver gaussian_cov(). Used for glm.gaussian() and glm.multigaussian()
families. Generally "naive" is used for wide matrices, and "cov" for tall matrices.
If method="constraint", the matrix is used as input to the constraint objects.

n_threads Number of threads.

Value

Dense matrix. The object is an S4 class with methods for efficient computation by adelie.

Author(s)

Trevor Hastie and James Yang
Maintainer: Trevor Hastie hastie@stanford.edu

Examples

n <- 100
p <- 20
X_dense <- matrix(rnorm(n * p), n, p)
out <- matrix.dense(X_dense, method="naive")
A_dense <- t(X_dense) %*% X_dense
out <- matrix.dense(A_dense, method="cov")
out <- matrix.dense(X_dense, method="constraint")

mailto:hastie@stanford.edu

28 matrix.interaction

matrix.eager_cov Creates an eager covariance matrix.

Description

Creates an eager covariance matrix.

Usage

matrix.eager_cov(mat, n_threads = 1)

Arguments

mat A dense matrix to be used with the gaussian_cov() solver.

n_threads Number of threads.

Value

The dense covariance matrix. This matrix is exactly t(mat)%*%mat, computed with some efficiency.

Examples

n <- 100
p <- 20
mat <- matrix(rnorm(n * p), n, p)
out <- matrix.eager_cov(mat)

matrix.interaction Creates a matrix with pairwise interactions.

Description

Creates a matrix with pairwise interactions.

Usage

matrix.interaction(
mat,
intr_keys = NULL,
intr_values,
levels = NULL,
n_threads = 1

)

matrix.kronecker_eye 29

Arguments

mat The dense matrix, which can include factors with levels coded as non-negative
integers.

intr_keys List of feature indices. This is a list of all features with which interactions can
be formed. Default is 1:p where p is the number of columns in mat.

intr_values List of integer vectors of feature indices. For each of the m <= p indices listed in
intr_keys, there is a vector of indices indicating which columns are candidates
for interaction with that feature. If a list is list(NULL), that means all other
features are candidates for interactions. The default is a list of length m where
each element is list(NULL); that is rep(list(NULL), m.

levels Number of levels for each of the columns of mat, with 1 representing a quan-
titative feature. A factor with K levels should be represented by the numbers
0,1,...,K-1.

n_threads Number of threads.

Value

Pairwise interaction matrix. Logic is used to avoid repetitions. For each factor variable, the column
is one-hot-encoded to form a basis for that feature. The object is an S4 class with methods for
efficient computation by adelie. Note that some of the arguments are transformed to C++ base 0 for
internal use, and if the object is examined, it will reflect that.

Author(s)

Trevor Hastie and James Yang
Maintainer: Trevor Hastie hastie@stanford.edu

Examples

n <- 10
p <- 20
X_dense <- matrix(rnorm(n * p), n, p)
X_dense[,1] <- rbinom(n, 4, 0.5)
intr_keys <- c(1, 2)
intr_values <- list(NULL, c(1, 3))
levels <- c(c(5), rep(1, p-1))
out <- matrix.interaction(X_dense, intr_keys, intr_values, levels)

matrix.kronecker_eye Creates a Kronecker product with an identity matrix.

Description

Creates a Kronecker product with an identity matrix.

mailto:hastie@stanford.edu

30 matrix.lazy_cov

Usage

matrix.kronecker_eye(mat, K = 1, n_threads = 1)

Arguments

mat The matrix to view as a Kronecker product.

K Dimension of the identity matrix (default is 1, which does essentially nothing).

n_threads Number of threads.

Value

Kronecker product with identity matrix. If mat is n x p, the the resulting matrix will be nK x np.
The object is an S4 class with methods for efficient computation by adelie.

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie hastie@stanford.edu

Examples

n <- 100
p <- 20
K <- 2
mat <- matrix(rnorm(n * p), n, p)
out <- matrix.kronecker_eye(mat, K)
mat <- matrix.dense(mat)
out <- matrix.kronecker_eye(mat, K)

matrix.lazy_cov Creates a lazy covariance matrix.

Description

Creates a lazy covariance matrix.

Usage

matrix.lazy_cov(mat, n_threads = 1)

Arguments

mat A dense data matrix to be used with the gaussian_cov() solver.

n_threads Number of threads.

mailto:hastie@stanford.edu

matrix.one_hot 31

Value

Lazy covariance matrix. This is essentially the same matrix, but with a setup to create covariance
terms as needed on the fly. The object is an S4 class with methods for efficient computation by
adelie.

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie hastie@stanford.edu

Examples

n <- 100
p <- 20
mat <- matrix(rnorm(n * p), n, p)
out <- matrix.lazy_cov(mat)

matrix.one_hot Creates a one-hot encoded matrix.

Description

Creates a one-hot encoded matrix.

Usage

matrix.one_hot(mat, levels = NULL, n_threads = 1)

Arguments

mat A dense matrix, which can include factors with levels coded as non-negative
integers.

levels Number of levels for each of the columns of mat, with 1 representing a quan-
titative feature. A factor with K levels should be represented by the numbers
0,1,...,K-1.

n_threads Number of threads.

Value

One-hot encoded matrix. All the factor columns, with levels>1, are replaced by a collection of
one-hot encoded versions (dummy matrices). The resulting matrix has sum(levels) columns. The
object is an S4 class with methods for efficient computation by adelie. Note that some of the
arguments are transformed to C++ base 0 for internal use, and if the object is examined, it will
reflect that.

mailto:hastie@stanford.edu

32 matrix.snp_phased_ancestry

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie hastie@stanford.edu

Examples

n <- 100
p <- 20
mat <- matrix(rnorm(n * p), n, p)
fac <- sample(0:5, n, replace = TRUE)
mat=cbind(fac,mat)
levels <- c(6, rep(1,p))
out <- matrix.one_hot(mat, levels = levels)

matrix.snp_phased_ancestry

Creates a SNP phased, ancestry matrix.

Description

Creates a SNP phased, ancestry matrix.

Usage

matrix.snp_phased_ancestry(io, n_threads = 1)

Arguments

io IO handler.

n_threads Number of threads.

Value

SNP phased, ancestry matrix.

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie hastie@stanford.edu

Examples

n <- 123
s <- 423
A <- 8
filename <- paste(tempdir(), "snp_phased_ancestry_dummy.snpdat", sep="/")
handle <- io.snp_phased_ancestry(filename)
calldata <- matrix(

mailto:hastie@stanford.edu
mailto:hastie@stanford.edu

matrix.snp_unphased 33

as.integer(sample.int(
2, n * s * 2,
replace=TRUE,
prob=c(0.7, 0.3)

) - 1),
n, s * 2

)
ancestries <- matrix(

as.integer(sample.int(
A, n * s * 2,
replace=TRUE,
prob=rep_len(1/A, A)

) - 1),
n, s * 2

)
handle$write(calldata, ancestries, A, 1)
out <- matrix.snp_phased_ancestry(handle)
file.remove(filename)

matrix.snp_unphased Creates a SNP unphased matrix.

Description

Creates a SNP unphased matrix.

Usage

matrix.snp_unphased(io, n_threads = 1)

Arguments

io IO handler.

n_threads Number of threads.

Value

SNP unphased matrix.

Examples

n <- 123
s <- 423
filename <- paste(tempdir(), "snp_unphased_dummy.snpdat", sep="/")
handle <- io.snp_unphased(filename)
mat <- matrix(

as.integer(sample.int(
3, n * s,
replace=TRUE,

34 matrix.sparse

prob=c(0.7, 0.2, 0.1)
) - 1),
n, s

)
impute <- double(s)
handle$write(mat, "mean", impute, 1)
out <- matrix.snp_unphased(handle)
file.remove(filename)

matrix.sparse Creates a sparse matrix object.

Description

Creates a sparse matrix object.

Usage

matrix.sparse(mat, method = c("naive", "cov", "constraint"), n_threads = 1)

Arguments

mat A sparse matrix.

method Method type, with default method="naive". If method="cov", the matrix is
used with the solver gaussian_cov(). Used for glm.gaussian() and glm.multigaussian()
families. Generally "naive" is used for wide matrices, and "cov" for tall matrices.
If method="constraint", the matrix is used as input to the constraint objects.

n_threads Number of threads.

Value

Sparse matrix object. The object is an S4 class with methods for efficient computation by adelie.

Examples

n <- 100
p <- 20
X_dense <- matrix(rnorm(n * p), n, p)
X_sp <- as(X_dense, "dgCMatrix")
out <- matrix.sparse(X_sp, method="naive")
A_dense <- t(X_dense) %*% X_dense
A_sp <- as(A_dense, "dgCMatrix")
out <- matrix.sparse(A_sp, method="cov")
out <- matrix.sparse(X_sp, method="constraint")

matrix.standardize 35

matrix.standardize Creates a standardized matrix.

Description

Creates a standardized matrix.

Usage

matrix.standardize(
mat,
centers = NULL,
scales = NULL,
weights = NULL,
ddof = 0,
n_threads = 1

)

Arguments

mat An adelie matrix.

centers The center values. Default is to use the column means.

scales The scale values. Default is to use the sample standard deviations.

weights Observation weight vector, which defaults to 1/n per observation.

ddof Degrees of freedom for standard deviations, with default 0 (1/n). The alternative
is 1 leading to 1/(n-1).

n_threads Number of threads.

Value

Standardized matrix. The object is an S4 class with methods for efficient computation by adelie.
Conventions depend on the matrix class. For example, if a matrix is constructed using matrix.onehot(),
only the quantitative variables are standardized.

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie hastie@stanford.edu

Examples

n <- 100
p <- 20
X <- matrix(rnorm(n * p), n, p)
out <- matrix.standardize(matrix.dense(X))

mailto:hastie@stanford.edu

36 matrix.subset

matrix.subset Creates a subset of the matrix along an axis.

Description

Creates a subset of the matrix along an axis.

Usage

matrix.subset(mat, indices, axis = 1, n_threads = 1)

Arguments

mat The adelie matrix to subset.

indices Vector of indices to subset the matrix.

axis The axis along which to subset (2 is columns, 1 is rows).

n_threads Number of threads.

Value

Matrix subsetted along the appropriate axis. The object is an S4 class with methods for efficient
computation by adelie.

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie hastie@stanford.edu

Examples

n <- 100
p <- 20
X <- matrix.dense(matrix(rnorm(n * p), n, p))
indices <- c(1, 3, 10)
out <- matrix.subset(X, indices, axis=1)
out <- matrix.subset(X, indices, axis=2)

mailto:hastie@stanford.edu

plot.cv.glintnet 37

plot.cv.glintnet plot the cross-validation curve produced by cv.glintnet

Description

Plots the cross-validation curve, and upper and lower standard deviation curves, as a function of the
lambda values used.

Plots the cross-validation curve, and upper and lower standard deviation curves, as a function of the
lambda values used.

Usage

S3 method for class 'cv.glintnet'
plot(x, sign.lambda = -1, ...)

S3 method for class 'cv.grpnet'
plot(x, sign.lambda = -1, ...)

Arguments

x fitted "cv.grpnet" object

sign.lambda Either plot against log(lambda) or its negative (default) if sign.lambda=-1

... Other graphical parameters

Details

A plot is produced, and nothing is returned.

A plot is produced, and nothing is returned.

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie hastie@stanford.edu

References

Yang, James and Hastie, Trevor. (2024) A Fast and Scalable Pathwise-Solver for Group Lasso and
Elastic Net Penalized Regression via Block-Coordinate Descent. arXiv doi:10.48550/arXiv.2405.08631.
Adelie Python user guide https://jamesyang007.github.io/adelie/

See Also

grpnet and cv.grpnet.

mailto:hastie@stanford.edu
https://doi.org/10.48550/arXiv.2405.08631
https://jamesyang007.github.io/adelie/

38 plot.grpnet

Examples

set.seed(0)
n=500
d_cont = 5 # number of continuous features
d_disc = 5 # number of categorical features
Z_cont = matrix(rnorm(n*d_cont), n, d_cont)
levels = sample(2:5,d_disc, replace = TRUE)
Z_disc = matrix(0,n,d_disc)
for(i in seq(d_disc))Z_disc[,i] = sample(0:(levels[i]-1),n,replace=TRUE)
Z = cbind(Z_cont,Z_disc)
levels = c(rep(1,d_cont),levels)

xmat = model.matrix(~Z_cont[,1]*factor(Z_disc[,2]))
nc=ncol(xmat)
beta = rnorm(nc)
y = xmat%*%beta+rnorm(n)*1.5

cvfit <- cv.glintnet(Z, glm.gaussian(y), levels=levels, intr_keys = 1)
plot(cvfit)

set.seed(1010)
n = 1000
p = 100
nzc = trunc(p/10)
x = matrix(rnorm(n * p), n, p)
beta = rnorm(nzc)
fx = (x[, seq(nzc)] %*% beta)
eps = rnorm(n) * 5
y = drop(fx + eps)
px = exp(fx)
px = px/(1 + px)
ly = rbinom(n = length(px), prob = px, size = 1)
cvob1 = cv.grpnet(x, glm.gaussian(y))
plot(cvob1)
title("Gaussian Family", line = 2.5)
frame()
set.seed(1011)
cvob2 = cv.grpnet(x, glm.binomial(ly))
plot(cvob2)
title("Binomial Family", line = 2.5)

plot.grpnet plot coefficients from a "grpnet" object

Description

Produces a coefficient profile plot of the coefficient paths for a fitted "grpnet" object.

plot.grpnet 39

Usage

S3 method for class 'grpnet'
plot(x, sign.lambda = -1, glm.name = TRUE, ...)

Arguments

x fitted "grpnet" model

sign.lambda This determines whether we plot against log(lambda) or its negative. values
are -1(default) or 1

glm.name This is a logical (default TRUE), and causes the glm name of the model to be
included in the plot.

... Other graphical parameters to plot

Details

A coefficient profile plot is produced. If x is a multinomial or multigaussian model, the 2norm of
the vector of coefficients is plotted.

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie hastie@stanford.edu

References

Yang, James and Hastie, Trevor. (2024) A Fast and Scalable Pathwise-Solver for Group Lasso and
Elastic Net Penalized Regression via Block-Coordinate Descent. arXiv doi:10.48550/arXiv.2405.08631.

See Also

grpnet, and print, and coef methods, and cv.grpnet.

Examples

x=matrix(rnorm(100*20),100,20)
y=rnorm(100)
fit1=grpnet(x,glm.gaussian(y))
plot(fit1)
g4=diag(4)[sample(1:4,100,replace=TRUE),]
fit2=grpnet(x,glm.multinomial(g4))
plot(fit2,lwd=3)
fit3=grpnet(x,glm.gaussian(y),groups=c(1,5,9,13,17))
plot(fit3)

mailto:hastie@stanford.edu
https://doi.org/10.48550/arXiv.2405.08631

40 predict.cv.glintnet

predict.cv.glintnet make predictions from a "cv.glintnet" object.

Description

This function makes predictions from a cross-validated glintnet model, using the stored "glintnet.fit"
object, and the optimal value chosen for lambda.

Usage

S3 method for class 'cv.glintnet'
predict(object, newx, lambda = c("lambda.1se", "lambda.min"), ...)

Arguments

object Fitted "cv.glintnet".

newx Matrix of new values for x at which predictions are to be made. This matrix is
of the same form as in the call to glintnet.

lambda Value(s) of the penalty parameter lambda at which predictions are required. De-
fault is the entire sequence used to create the model. If values of lambda are
supplied, the function uses linear interpolation to make predictions for values of
lambda that do not coincide with those used in the fitting algorithm. Note: if
newx is a vector (a single row which has lost its matrix dimensions), convert it
to a 1-row matrix first, e.g. by supplying t(newx) instead.

... Other arguments that can be passed to predict.grpnet

Details

This function makes it easier to use the results of cross-validation to make a prediction.

Examples

set.seed(0)
n=500
d_cont = 5 # number of continuous features
d_disc = 5 # number of categorical features
Z_cont = matrix(rnorm(n*d_cont), n, d_cont)
levels = sample(2:5,d_disc, replace = TRUE)
Z_disc = matrix(0,n,d_disc)
for(i in seq(d_disc))Z_disc[,i] = sample(0:(levels[i]-1),n,replace=TRUE)
Z = cbind(Z_cont,Z_disc)
levels = c(rep(1,d_cont),levels)

xmat = model.matrix(~Z_cont[,1]*factor(Z_disc[,2]))
nc=ncol(xmat)
beta = rnorm(nc)
y = xmat%*%beta+rnorm(n)*1.5

predict.cv.grpnet 41

cvfit <- cv.glintnet(Z, glm.gaussian(y), levels=levels, intr_keys = 1)
plot(cvfit)
predict(cvfit, newx=Z[1:5,])

predict.cv.grpnet make predictions from a "cv.grpnet" object.

Description

This function makes predictions from a cross-validated grpnet model, using the stored "grpnet.fit"
object, and the optimal value chosen for lambda.

Usage

S3 method for class 'cv.grpnet'
predict(object, newx, lambda = c("lambda.1se", "lambda.min"), ...)

Arguments

object Fitted "cv.grpnet".

newx Matrix of new values for x at which predictions are to be made. Can be a matrix,
a sparse matrix as in Matrix package, or else any of the matrix forms allowable
in the adelie package. This argument is not used for type="coefficients".

lambda Value(s) of the penalty parameter lambda at which predictions are required. De-
fault is the value lambda="lambda.1se" stored on the CV object. Alterna-
tively lambda="lambda.min" can be used. If lambda is numeric, it is taken as
the value(s) of lambda to be used.

... Other arguments to predict.grpnet, such at type.

Details

This function makes it easier to use the results of cross-validation to make a prediction.

Value

The object returned depends on the arguments.

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie hastie@stanford.edu

References

Yang, James and Hastie, Trevor. (2024) A Fast and Scalable Pathwise-Solver for Group Lasso and
Elastic Net Penalized Regression via Block-Coordinate Descent. arXiv doi:10.48550/arXiv.2405.08631.

mailto:hastie@stanford.edu
https://doi.org/10.48550/arXiv.2405.08631

42 predict.glintnet

See Also

grpnet, and print, and coef methods, and cv.grpnet.

Examples

x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(100)
cv.fit = cv.grpnet(x, glm.gaussian(y))
predict(cv.fit, newx = x[1:5,])
coef(cv.fit)
coef(cv.fit, lambda = "lambda.min")
predict(cv.fit, newx = x[1:5,], lambda = c(0.001, 0.002))

predict.glintnet make predictions from a "glintnet" object.

Description

Similar to other predict methods, this functions predicts linear predictors, coefficients and more
from a fitted "glintnet" object.

Usage

S3 method for class 'glintnet'
predict(
object,
newx,
lambda = NULL,
type = c("link", "response", "coefficients", "nonzero"),
newoffsets = NULL,
n_threads = 1,
...

)

Arguments

object Fitted "glintnet" model.

newx Matrix of new values for x at which predictions are to be made. This matrix is
of the same form as in the call to glintnet.

lambda Value(s) of the penalty parameter lambda at which predictions are required. De-
fault is the entire sequence used to create the model. If values of lambda are
supplied, the function uses linear interpolation to make predictions for values of
lambda that do not coincide with those used in the fitting algorithm. Note: if
newx is a vector (a single row which has lost its matrix dimensions), convert it
to a 1-row matrix first, e.g. by supplying t(newx) instead.

predict.glintnet 43

type Type of prediction required. Type "link" is the default, and gives the linear
predictors. Type "response" applies the inverse link to these predictions. Type
"coefficients" extracts the coefficients, intercepts and the active-set sizes.
Type "nonzero" returns a list of active groups along the path, indexed from 1 to
number of groups.

newoffsets If an offset is used in the fit, then one must be supplied for making predictions
(except for type="coefficients".

n_threads Number of threads, default 1.
... Other arguments that can be passed to predict.grpnet

Value

The object returned depends on type.

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie <hastie@stanford.edu>

References

Yang, James and Hastie, Trevor. (2024) A Fast and Scalable Pathwise-Solver for Group Lasso and
Elastic Net Penalized Regression via Block-Coordinate Descent. arXiv doi:10.48550/arXiv.2405.08631.
Adelie Python user guide https://jamesyang007.github.io/adelie/

See Also

grpnet, and print, and coef methods, and cv.grpnet.

Examples

set.seed(0)
n=500
d_cont = 5 # number of continuous features
d_disc = 5 # number of categorical features
Z_cont = matrix(rnorm(n*d_cont), n, d_cont)
levels = sample(2:5,d_disc, replace = TRUE)
Z_disc = matrix(0,n,d_disc)
for(i in seq(d_disc))Z_disc[,i] = sample(0:(levels[i]-1),n,replace=TRUE)
Z = cbind(Z_cont,Z_disc)
levels = c(rep(1,d_cont),levels)

xmat = model.matrix(~Z_cont[,1]*factor(Z_disc[,2]))
nc=ncol(xmat)
beta = rnorm(nc)
y = xmat%*%beta+rnorm(n)*1.5

fit <- glintnet(Z, glm.gaussian(y), levels=levels, intr_keys = 1)
predict(fit, lambda = c(.1,.01), newx = Z[1:4,])
predict(fit, lambda = c(0.1,0.01), type="nonzero")

https://doi.org/10.48550/arXiv.2405.08631
https://jamesyang007.github.io/adelie/

44 predict.grpnet

predict.grpnet make predictions from a "grpnet" object.

Description

Similar to other predict methods, this functions predicts linear predictors, coefficients and more
from a fitted "grpnet" object. Note that if the default standardize=TRUEE was used in fitting
the grpnet object, the coefficients reported are for the standardized inputs. However, the predict
function will apply the stored standardization to newx and give the correct predictions.

Usage

S3 method for class 'grpnet'
predict(
object,
newx,
lambda = NULL,
type = c("link", "response", "coefficients", "nonzero"),
newoffsets = NULL,
n_threads = 1,
...

)

S3 method for class 'grpnet'
coef(object, lambda = NULL, ...)

Arguments

object Fitted "grpnet" model.

newx Matrix of new values for x at which predictions are to be made. Can be a matrix,
a sparse matrix as in Matrix package, or else any of the matrix forms allowable
in the adelie package. The number of columns must match that of the input ma-
trix used in fitting object. If the model object was fit with standardize=TRUE,
the saved centers and scaling will be applied to this matrix. This argument is not
used for type="coefficients"

lambda Value(s) of the penalty parameter lambda at which predictions are required. De-
fault is the entire sequence used to create the model. If values of lambda are
supplied, the function uses linear interpolation to make predictions for values of
lambda that do not coincide with those used in the fitting algorithm. Note: if
newx is a vector (a single row which has lost its matrix dimensions), convert it
to a 1-row matrix first, e.g. by supplying t(newx) instead.

type Type of prediction required. Type "link" is the default, and gives the linear
predictors. Type "response" applies the inverse link to these predictions. Type
"coefficients" extracts the coefficients, intercepts and the active-set sizes.
Type "nonzero" returns a list of active groups along the path, indexed from 1 to
number of groups.

predict.grpnet 45

newoffsets If an offset is used in the fit, then one must be supplied for making predictions
(except for type="coefficients".

n_threads Number of threads, default 1.

... Currently ignored.

Details

The shape of the objects returned are different for "multinomial" and "multigaussian" objects.
coef(...) is equivalent to predict(type="coefficients",...)

Value

The object returned depends on type.

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie <hastie@stanford.edu>

References

Yang, James and Hastie, Trevor. (2024) A Fast and Scalable Pathwise-Solver for Group Lasso and
Elastic Net Penalized Regression via Block-Coordinate Descent. arXiv doi:10.48550/arXiv.2405.08631.
Adelie Python user guide https://jamesyang007.github.io/adelie/

See Also

grpnet, and print, and coef methods, and cv.grpnet.

Examples

set.seed(0)
n <- 100
p <- 200
X <- matrix(rnorm(n * p), n, p)
y <- X[,1] * rnorm(1) + rnorm(n)
groups <- c(1, sample(2:199, 60, replace = FALSE))
groups <- sort(groups)
fit <- grpnet(X, glm.gaussian(y), groups = groups)
coef(fit)
predict(fit,newx = X[1:5,], lambda = c(0.1, 0.05))
predict(fit, type="nonzero", lambda = c(0.1, 0.05))

https://doi.org/10.48550/arXiv.2405.08631
https://jamesyang007.github.io/adelie/

46 print.cv.grpnet

print.cv.grpnet print a cross-validated grpnet object

Description

Print a summary of the results of cross-validation for a grpnet model.

Usage

S3 method for class 'cv.grpnet'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x fitted ’cv.grpnet’ object

digits significant digits in printout

... additional print arguments

Author(s)

James Yang, Trevor Hastie, and Balasubramanian Narasimhan
Maintainer: Trevor Hastie hastie@stanford.edu

References

Yang, James and Hastie, Trevor. (2024) A Fast and Scalable Pathwise-Solver for Group Lasso and
Elastic Net Penalized Regression via Block-Coordinate Descent. arXiv doi:10.48550/arXiv.2405.08631.

See Also

grpnet, predict and coef methods.

Examples

x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(100)
fit1 = cv.grpnet(x, glm.gaussian(y))
print(fit1)

mailto:hastie@stanford.edu
https://doi.org/10.48550/arXiv.2405.08631

print.glintnet 47

print.glintnet Print a summary of the glintnet path at each step along the path.

Description

Print a summary of the grpnet path at each step along the path.

Usage

S3 method for class 'glintnet'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x fitted glintnet object

digits significant digits in printout

... additional print arguments

Details

The call that produced the object x is printed, followed by a five-column matrix with columns
N_main, N_int, Df, %Dev and Lambda. The N_main column is the number of main-effect terms in
the solution, and N_int the number of interaction terms. Since an interaction term implies both
main effects, the former is always at least as large as the latter. The Df column is the number of
nonzero coefficients (Df is a reasonable name only for lasso fits). %Dev is the percent deviance
explained (relative to the null deviance).

Value

The matrix above is silently returned

References

Yang, James and Hastie, Trevor. (2024) A Fast and Scalable Pathwise-Solver for Group Lasso and
Elastic Net Penalized Regression via Block-Coordinate Descent. arXiv doi:10.48550/arXiv.2405.08631.

See Also

grpnet, predict, plot and coef methods.

Examples

x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(100)
fit1 = grpnet(x, glm.gaussian(y), groups = c(1:5,7,9))
print(fit1)

https://doi.org/10.48550/arXiv.2405.08631

48 print.grpnet

print.grpnet print a grpnet object

Description

Print a summary of the grpnet path at each step along the path.

Usage

S3 method for class 'grpnet'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x fitted grpnet object

digits significant digits in printout

... additional print arguments

Details

The call that produced the object x is printed, followed by a four-column matrix with columns
Groups, Df, %Dev and Lambda. The Groups column is the number of active groups in the solution.
The Df column is the number of nonzero coefficients (Df is a reasonable name only for lasso fits).
%Dev is the percent deviance explained (relative to the null deviance).

Value

The matrix above is silently returned

References

Yang, James and Hastie, Trevor. (2024) A Fast and Scalable Pathwise-Solver for Group Lasso and
Elastic Net Penalized Regression via Block-Coordinate Descent. arXiv doi:10.48550/arXiv.2405.08631.

See Also

grpnet, predict, plot and coef methods.

Examples

x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(100)
fit1 = grpnet(x, glm.gaussian(y), groups = c(1:5,7,9))
print(fit1)

https://doi.org/10.48550/arXiv.2405.08631

set_configs 49

set_configs Set configuration settings.

Description

Set configuration settings.

Usage

set_configs(name, value = NULL)

Arguments

name Configuration variable name.

value Value to assign to the configuration variable.

Value

Assigned value.

Examples

set_configs("hessian_min", 1e-6)
set_configs("hessian_min")

Index

∗ group
plot.cv.glintnet, 37
print.cv.grpnet, 46

∗ lasso
plot.cv.glintnet, 37
print.cv.grpnet, 46

∗ models
plot.cv.glintnet, 37
plot.grpnet, 38
predict.cv.grpnet, 41
predict.glintnet, 42
predict.grpnet, 44
print.cv.grpnet, 46
print.grpnet, 48

∗ regression
plot.cv.glintnet, 37
plot.grpnet, 38
predict.cv.grpnet, 41
predict.glintnet, 42
predict.grpnet, 44
print.cv.grpnet, 46
print.grpnet, 48

coef.cv.glintnet (predict.cv.glintnet),
40

coef.cv.grpnet (predict.cv.grpnet), 41
coef.glintnet (predict.glintnet), 42
coef.grpnet (predict.grpnet), 44
constraint.box, 3
cv.glintnet, 4
cv.grpnet, 6

gaussian_cov, 9
glintnet, 11
glm.binomial, 13
glm.cox, 14
glm.gaussian, 15
glm.multigaussian, 16
glm.multinomial, 17
glm.poisson, 18

grpnet, 19

io.snp_phased_ancestry, 22
io.snp_unphased, 23

matrix.block_diag, 24
matrix.concatenate, 25
matrix.convex_relu, 26
matrix.dense, 27
matrix.eager_cov, 28
matrix.interaction, 28
matrix.kronecker_eye, 29
matrix.lazy_cov, 30
matrix.one_hot, 31
matrix.snp_phased_ancestry, 32
matrix.snp_unphased, 33
matrix.sparse, 34
matrix.standardize, 35
matrix.subset, 36

plot.cv.glintnet, 37
plot.cv.grpnet (plot.cv.glintnet), 37
plot.grpnet, 38
predict.cv.glintnet, 40
predict.cv.grpnet, 41
predict.glintnet, 42
predict.grpnet, 44
print.cv.grpnet, 46
print.glintnet, 47
print.grpnet, 48

set_configs, 49

50

	constraint.box
	cv.glintnet
	cv.grpnet
	gaussian_cov
	glintnet
	glm.binomial
	glm.cox
	glm.gaussian
	glm.multigaussian
	glm.multinomial
	glm.poisson
	grpnet
	io.snp_phased_ancestry
	io.snp_unphased
	matrix.block_diag
	matrix.concatenate
	matrix.convex_relu
	matrix.dense
	matrix.eager_cov
	matrix.interaction
	matrix.kronecker_eye
	matrix.lazy_cov
	matrix.one_hot
	matrix.snp_phased_ancestry
	matrix.snp_unphased
	matrix.sparse
	matrix.standardize
	matrix.subset
	plot.cv.glintnet
	plot.grpnet
	predict.cv.glintnet
	predict.cv.grpnet
	predict.glintnet
	predict.grpnet
	print.cv.grpnet
	print.glintnet
	print.grpnet
	set_configs
	Index

