biomod2 is working as a wrapper, calling external packages to use their single model functions. Modeling options are automatically retrieved from these packages, allowing the use of all arguments taken into account by these functions.
Note that there are 2 exceptions : the Surface Range Envelop (SRE) model, which is directly coded within biomod2 package, and MAXENT java software, whose executable file is required in the simulation folder to be used.

All this information, about which single models are available, from which package they come from, which function is called, is stored within the ModelsTable data object :
model type package func train
1 ANN binary nnet nnet avNNet
2 CTA binary rpart rpart rpart
3 DNN binary cito dnn tune
4 FDA binary mda fda fda
5 GAM binary gam gam gamLoess
6 GAM binary mgcv bam bam
7 GAM binary mgcv gam gam
8 GBM binary gbm gbm gbm
9 GLM binary stats glm glm
10 MARS binary earth earth earth
11 MAXENT binary MAXENT MAXENT ENMevaluate
12 MAXNET binary maxnet maxnet maxnet
13 RF binary randomForest randomForest rf
14 RFd binary randomForest randomForest rf
15 SRE binary biomod2 bm_SRE bm_SRE
16 XGBOOST binary xgboost xgboost xgbTree
17 CTA nonbinary rpart rpart rpart
18 DNN nonbinary cito dnn tune
19 FDA nonbinary mda fda fda
20 GAM nonbinary gam gam gamLoess
21 GAM nonbinary mgcv bam bam
22 GAM nonbinary mgcv gam gam
23 GBM nonbinary gbm gbm gbm
24 GLM nonbinary stats glm glm
25 MARS nonbinary earth earth earth
26 RF nonbinary randomForest randomForest rf
27 XGBOOST nonbinary xgboost xgboost xgbTree
The ID name of each single models corresponds to the concatenation of the model, package, func and train columns.
For example : ANN.nnet.nnet.avNNet for the Artificial Neural Network model.
The type column specifies the data category, and some models can be used for both possible cases :
data.type = 'binary' in BIOMOD_FormatingData)count, multiclass, ordinal, relative, abundance)bm_ModelingOptions function returns for each selected single model both its informations and its default parameter values retrieved from its corresponding package.
myOptions <- bm_ModelingOptions(data.type = 'binary', strategy = 'default')
myOptions
slotNames(myOptions)
names(myOptions@options)



Note that some values are modified internally after retrieval to ensure biomod2 proper functioning. However, this represents minimum service and this strategy will often lead to bad models or even some errors, as default values are often non-adapted to species distribution modeling in general, and to specific dataset in particular.
Note that MAXENT is a special case. As being called directly through its java executable software, the recovery of parameters is not automatic as for other algorithms relying on R packages and functions. Hence, the set of available parameters for MAXENT is fixed, and can be consulted within the documentation of bm_ModelingOptions function.
bigboss is a modified set, provided by biomod2 team, tends to correct at least the species distribution aspect. All parameter values for all single models are available within the OptionsBigboss data object.
myOptions <- bm_ModelingOptions(data.type = 'binary', strategy = 'bigboss')
myOptions

Note that this is still a general solution, not necessarily adapted to your data, and can show no significative improvements.
With tuned options, some algorithms can be trained over your data sets, mostly using the caret package which calls a specific function to tune each model (see train column in ModelsTable). With the exception of SRE, which is internally optimized, and MAXENT, which can be tuned thanks to the ENMevaluate function from ENMeval package.
Here is the list of the parameters that can be tuned when calling bm_Tuning :
| algorithm | parameters |
|---|---|
| ANN | size, decay, bag |
| DNN | hidden, bias, lambda, alpha, lr, batchsize, epochs |
| FDA | degree, nprune |
| GAM | select, method, span, degree |
| GBM | n.trees, interaction.depth, shrinkage, n.minobsinnode |
| MARS | degree, nprune |
| MAXENT | algorithm, parallel, tune.args, partitions, kfolds, user.grp |
| RF | mtry |
| RFd | mtry |
| SRE | quant |
| XGBOOST | nrounds, max_depth, eta, gamma, colsampl_bytree, min_child_weight, subsample |
For almost all algorithms (except MAXENT, MAXNET and SRE), you can choose to optimize the formula by setting do.formula = TRUE, testing for different type (simple, quadratic, polynomial, s_smoother) and interaction level.
In the same way, variable selection can be run for GLM and GAM if do.stepAIC = TRUE (with MASS::stepAIC and gam::step.Gam functions respectively).
myTuning <- bm_Tuning(model = 'RF',
tuning.fun = 'rf', ## see in ModelsTable
do.formula = FALSE,
bm.options = myOptions@options$RF.binary.randomForest.randomForest,
bm.format = myBiomodData)
myTuning

The user.defined option allows to adjust yourself all algorithm parameters, which means it can be a mix of everything :
user.base parameteruser.val parameterExample : run 3 single models (RF, GLM and MARS), using the bigboss parameters as a basis and adapting them as much as possible to the data and cross-validation parts
## Create 2 sets of random splitting
myBiomodCV <- bm_CrossValidation(bm.format = myBiomodData,
strategy = 'random',
nb.rep = 2,
perc = 0.8)
## ----------------------------------------------------------------------------------- ##
## Extract bigboss parameters for the 3 models
## Provide formated data (for formula)
## Provide cross-validation table (to duplicate settings for each set)
opt.BB <- bm_ModelingOptions(data.type = 'binary',
models = c('RF', 'GLM', 'MARS'),
strategy = 'bigboss',
bm.format = myBiomodData,
calib.lines = myBiomodCV)
## ----------------------------------------------------------------------------------- ##
## Tune RF parameters for each data set
tuned.RF <- bm_Tuning(model = 'RF',
tuning.fun = 'rf', ## see in ModelsTable
do.formula = TRUE,
bm.options = opt.BB@options$RF.binary.randomForest.randomForest,
bm.format = myBiomodData,
calib.lines = myBiomodCV)
## ----------------------------------------------------------------------------------- ##
## Update GLM formula
## Apply it to both calibration sets
form.GLM <- bm_MakeFormula(resp.name = myBiomodData@sp.name,
expl.var = head(myBiomodData@data.env.var),
type = 'quadratic',
interaction.level = 2)
user.GLM <- list('_allData_RUN1' = list(formula = form.GLM),
'_allData_RUN2' = list(formula = form.GLM))
## ----------------------------------------------------------------------------------- ##
## Gather in one list modified parameters
## Models names can be found in OptionsBigboss@models
user.val <- list(RF.binary.randomForest.randomForest = tuned.RF,
GLM.binary.stats.glm = user.GLM)
## Create the final modeling options set
## Using bigboss as base (user.base)
## Updating some elements (user.val)
myOptions <- bm_ModelingOptions(data.type = 'binary',
models = c('RF', 'GLM', 'MARS'),
strategy = 'user.defined',
user.val = user.val,
user.base = 'bigboss',
bm.format = myBiomodData,
calib.lines = myBiomodCV)
print(myOptions)
print(myOptions, dataset = '_allData_RUN1')
print(myOptions, dataset = '_allData_RUN2')
## ----------------------------------------------------------------------------------- ##
## Give this final modeling options set to the modeling function
myBiomodModelOut <- BIOMOD_Modeling(bm.format = myBiomodData,
modeling.id = 'Example',
models = c('RF', 'GLM', 'MARS'),
CV.strategy = 'user.defined',
CV.user.table = myBiomodCV,
OPT.user = myOptions,
metric.eval = c('TSS', 'ROC', 'BOYCE'))
get_options(myBiomodModelOut)