
Package ‘birddog’
February 19, 2026

Title Sniffing Emergence and Trajectories in Academic Papers and
Patents

Version 1.0.0

Description Provides a unified set of methods to detect scientific emergence
and technological trajectories in academic papers and patents. The package
combines citation network analysis with community detection and attribute
extraction, also applying natural language processing (NLP) and structural
topic modeling (STM) to uncover the contents of research communities. It
implements metrics and visualizations of community trajectories, including
novelty indicators, citation cycle time, and main path analysis, allowing
researchers to map and interpret the dynamics of emerging knowledge fields.
Applications of the method include: Souza et al. (2022)
<doi:10.1002/bbb.2441>, Souza et al. (2022)
<doi:10.14211/ibjesb.e1742>, Matos et al. (2023)
<doi:10.1007/s43938-023-00036-3>, Maria et al. (2023)
<doi:10.3390/su15020967>, Biazatti et al. (2024)
<doi:10.1016/j.envdev.2024.101074>, Felizardo et al. (2025)
<doi:10.1007/s12649-025-03136-z>, and Miranda et al. (2025)
<doi:10.1016/j.ijhydene.2025.01.089>.

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.3

Imports dplyr, ggraph, ggplot2, plotly, igraph, tidygraph, tidyr,
tibble, Matrix, purrr, readr, rlang, glue, openalexR,
RColorBrewer, scales, stringr

Suggests cli, ggHoriPlot, ggrepel, ggthemes, janitor, gt, testthat (>=
3.0.0), viridis, zoo, stm, tidytext, udpipe

Config/testthat/edition 3

Depends R (>= 4.1.0)

URL http://roneyfraga.com/birddog/,

https://github.com/roneyfraga/birddog

BugReports https://github.com/roneyfraga/birddog/issues

1

https://doi.org/10.1002/bbb.2441
https://doi.org/10.14211/ibjesb.e1742
https://doi.org/10.1007/s43938-023-00036-3
https://doi.org/10.3390/su15020967
https://doi.org/10.1016/j.envdev.2024.101074
https://doi.org/10.1007/s12649-025-03136-z
https://doi.org/10.1016/j.ijhydene.2025.01.089
http://roneyfraga.com/birddog/
https://github.com/roneyfraga/birddog
https://github.com/roneyfraga/birddog/issues

2 Contents

NeedsCompilation no

Author Roney Fraga Souza [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-5750-489X>),

Luis Felipe de Souza Rodrigues [ctb]

Maintainer Roney Fraga Souza <roneyfraga@gmail.com>

Repository CRAN

Date/Publication 2026-02-19 20:20:06 UTC

Contents

birddog-package . 3
attach_docs_to_vertices . 3
detect_main_trajectories . 4
filter_trajectories . 7
get_openalex_fields . 9
plot_group_trajectories_2d . 11
plot_group_trajectories_3d . 12
plot_group_trajectories_lines_2d . 14
plot_group_trajectories_lines_3d . 16
read_openalex . 18
read_wos . 20
sniff_citations_cycle_time . 21
sniff_components . 24
sniff_entropy . 25
sniff_groups . 27
sniff_groups_attributes . 29
sniff_groups_cumulative . 30
sniff_groups_cumulative_citations . 32
sniff_groups_hubs . 33
sniff_groups_keywords . 34
sniff_groups_stm_prepare . 35
sniff_groups_stm_run . 36
sniff_groups_terms . 37
sniff_groups_trajectories . 39
sniff_key_route . 40
sniff_network . 42

Index 43

https://orcid.org/0000-0001-5750-489X

birddog-package 3

birddog-package birddog: sniffing emergence and trajectories in academic papers and
patents

Description

Tools to detect emergence and trace technological/scientific trajectories in papers and patents. It
reads OpenAlex and Web of Science data, builds citation-based networks, identifies groups, and
summarizes their dynamics.

Links

• Website: http://roneyfraga.com/birddog/

• GitHub: https://github.com/roneyfraga/birddog

• Issues: https://github.com/roneyfraga/birddog/issues

Author(s)

Maintainer: Roney Fraga Souza <roneyfraga@gmail.com> (ORCID) [copyright holder]

Other contributors:

• Luis Felipe de Souza Rodrigues <lfsouza25@gmail.com> [contributor]

See Also

Useful links:

• Report bugs at https://github.com/roneyfraga/birddog/issues

attach_docs_to_vertices

Attach document IDs to graph vertices

Description

Adds document ID lists to each vertex in the graph based on the group-document mapping.

Usage

attach_docs_to_vertices(g, docs_tbl)

Arguments

g igraph object

docs_tbl Tibble with columns group_id and document_id

http://roneyfraga.com/birddog/
https://github.com/roneyfraga/birddog
https://github.com/roneyfraga/birddog/issues
https://orcid.org/orcid.org/0000-0001-5750-489X
https://github.com/roneyfraga/birddog/issues

4 detect_main_trajectories

Value

Modified igraph with doc_ids vertex attribute

detect_main_trajectories

Detect main temporal trajectories in group-year DAG

Description

Identifies the most significant temporal trajectories within a group’s evolution over time by building
a directed acyclic graph (DAG) from similarity data and extracting highest-scoring disjoint paths
using dynamic programming.

Usage

detect_main_trajectories(
groups_cumulative_trajectories,
group,
jaccard_min = 0.05,
intra_min = 0.1,
k_out = 2,
alpha = 1,
beta = 0.1,
top_M = 5,
min_len = 3,
use_docs_per_group = TRUE

)

Arguments

groups_cumulative_trajectories

List containing three components:

• groups_similarity: Nested list with similarity data for each group, con-
taining edges with from, to, weight (Jaccard), and documents

• groups_attributes: Nested list with node attributes for each group, con-
taining quantity_papers, prop_tracked_intra_group, tracked_documents,
PY.sd, and network_until

• docs_per_group: Data frame mapping group IDs to document IDs for ac-
curate unique document counting

group Character ID of the group to analyze (e.g., "component1_g01")

jaccard_min Minimum Jaccard similarity for edges (default: 0.05). Higher values create
sparser graphs with stronger connections.

intra_min Minimum proportion of tracked documents within group for nodes (default:
0.10). Higher values filter out weaker nodes.

detect_main_trajectories 5

k_out Maximum number of outgoing edges to keep per node (default: 2). Controls
graph sparsity - lower values create simpler backbone structures.

alpha Weight for edge strength in path scoring (default: 1). Higher values emphasize
transition strength over node quality.

beta Per-step persistence bonus in path scoring (default: 0.1). Higher values encour-
age longer trajectories.

top_M Maximum number of disjoint trajectories to extract (default: 5)

min_len Minimum number of distinct years for valid trajectory (default: 3)

use_docs_per_group

Whether to use document IDs for accurate unique document counting (default:
TRUE). If FALSE, uses approximation.

Details

This function implements a comprehensive pipeline for detecting significant temporal trajectories
in research group evolution:

Algorithm Overview:

1. Build Temporal DAG: Constructs a directed acyclic graph where:

• Nodes represent group-year combinations filtered by intra_min quality threshold

• Edges represent transitions between consecutive years filtered by jaccard_min

• Graph is sparsified to top k_out edges per node

2. Score Components: Computes node and edge scores:

• Node score: sv = log(1 + quantity_papersv × prop_tracked_intra_groupv)

• Edge score: se = weighte × log(1 + documentse)

3. Extract Trajectories: Uses dynamic programming to find heaviest paths:

• Path score: best(v) = max
(
sv,maxu→v

(
best(u) + sv + α · s(u,v) + β

))
• Iteratively extracts top top_M disjoint trajectories

• Trajectories must span at least min_len distinct years

4. Count Documents: Calculates unique document coverage:

• If use_docs_per_group = TRUE: Exact count via set union of document IDs

• Otherwise: Approximation:
∑

node documents −
∑

edge documents

Parameter Tuning Guidance:

• For smoother, longer trajectories: Increase beta (persistence bonus)

• For transition-focused scoring: Increase alpha (edge weight)

• For denser connectivity: Lower jaccard_min or increase k_out

• For higher quality nodes: Increase intra_min

• For exact document counts: Ensure use_docs_per_group = TRUE and provide docs_per_group
data

6 detect_main_trajectories

Value

A list with two components:

• graph: An igraph object representing the temporal DAG with scoring attributes and optional
document IDs

• trajectories: A tibble of detected trajectories sorted by score, with columns:

– traj_id: Trajectory identifier ("tr1", "tr2", ...)
– start, end: First and last year of the trajectory
– length: Number of distinct years in the trajectory
– nodes: List of node names along the path (e.g., "y2009g03")
– score: Total path score from dynamic programming
– mean_w: Mean edge score along the path
– sum_docs: Count of unique documents covered by the path
– mean_size: Mean node size (quantity_papers × proportion tracked)
– mean_PYsd: Mean publication year standard deviation

See Also

filter_trajectories() for post-processing detected trajectories, plot_group_trajectories_lines_2d()
and plot_group_trajectories_lines_3d() for visualization

Examples

Not run:
Basic usage with default parameters
trajectories <- detect_main_trajectories(

groups_cumulative_trajectories = my_data,
group = "component1_g01"

)

Tuned for longer, transition-focused trajectories
trajectories <- detect_main_trajectories(

groups_cumulative_trajectories = my_data,
group = "component1_g01",
jaccard_min = 0.03, # More permissive connectivity
k_out = 3, # Denser backbone
alpha = 1.5, # Emphasize edge strength
beta = 0.2, # Encourage longer paths
top_M = 8, # Extract more trajectories
min_len = 4 # Require longer trajectories

)

Access results
graph <- trajectories$graph
trajectory_data <- trajectories$trajectories

Plot the top trajectory
top_trajectory <- trajectory_data[1,]

filter_trajectories 7

End(Not run)

filter_trajectories Filter and rank detected trajectories

Description

Applies post-processing filters and ranking to trajectory data based on score, length, and other
criteria. This function helps refine the output from detect_main_trajectories() by keeping
only the most relevant trajectories according to user-specified constraints.

Usage

filter_trajectories(tr_tbl, top_n = 3, min_score = NULL, min_length = NULL)

Arguments

tr_tbl A tibble of trajectories from detect_main_trajectories()$trajectories.
Must contain at least traj_id, score, and length columns.

top_n Maximum number of trajectories to keep after filtering and sorting (default: 3).
If NULL, keeps all trajectories that meet the filter criteria.

min_score Minimum score threshold for trajectories (default: NULL). Trajectories with score
less than min_score are discarded. Useful for removing weak or noisy paths.

min_length Minimum trajectory length in distinct years (default: NULL). Trajectories shorter
than min_length are discarded. Ensures only trajectories spanning a meaning-
ful temporal horizon are kept.

Details

This function provides a straightforward way to refine trajectory detection results by applying qual-
ity filters and ranking. The filtering process occurs in three steps:

1. Quality Filtering: Remove trajectories that don’t meet minimum quality standards

• min_score: Filters by the dynamic programming path score (higher = better)
• min_length: Filters by temporal span in distinct years

2. Ranking: Sort remaining trajectories by descending score to prioritize the most significant
paths

3. Selection: Keep only the top top_n trajectories after filtering and sorting

Typical Use Cases:
• Focus on strongest signals: Use min_score to remove low-confidence trajectories
• Ensure temporal significance: Use min_length to require multi-year evolution
• Limit visualization complexity: Use top_n to focus on the most important paths
• Progressive refinement: Chain multiple calls with different criteria

8 filter_trajectories

Value

A filtered and sorted trajectory tibble with the same structure as input, containing only trajectories
that meet all criteria, sorted by descending score. Returns an empty tibble if no trajectories meet
the criteria.

See Also

detect_main_trajectories() for generating the trajectory data, plot_group_trajectories_lines_2d()
and plot_group_trajectories_lines_3d() for visualizing filtered trajectories

Examples

Not run:
Get trajectories first
traj_data <- detect_main_trajectories(

groups_cumulative_trajectories = my_data,
group = "component1_g01"

)

Basic: Keep top 3 trajectories by score
top_trajectories <- filter_trajectories(traj_data$trajectories)

Keep top 5 trajectories with minimum quality standards
quality_trajectories <- filter_trajectories(

tr_tbl = traj_data$trajectories,
top_n = 5,
min_score = 10,
min_length = 4

)

Keep all trajectories meeting minimum length (no top_n limit)
long_trajectories <- filter_trajectories(

tr_tbl = traj_data$trajectories,
top_n = NULL,
min_length = 5

)

Very strict filtering for high-quality, long trajectories
strict_trajectories <- filter_trajectories(

tr_tbl = traj_data$trajectories,
top_n = 3,
min_score = 15,
min_length = 6

)

Use filtered trajectories for visualization
plot_group_trajectories_lines_2d(

traj_data = traj_data,
traj_filtered = quality_trajectories

)

End(Not run)

get_openalex_fields 9

get_openalex_fields Get Fields from OpenAlex for Work IDs

Description

Retrieves specified fields for OpenAlex work IDs using the OpenAlex API. Processes data in
batches to avoid API rate limits.

Usage

get_openalex_fields(
openalex_ids,
variables = "publication_year",
batch_size = 50,
save_dir = NULL

)

Arguments

openalex_ids Character vector of OpenAlex work IDs (format: "W1234567890") or a data
frame/tibble containing a column named "CR" with OpenAlex IDs. IDs can be
semicolon-separated strings which will be split automatically.

variables Character vector of variable names to fetch from OpenAlex. Options include:
"publication_year", "doi", "type", "source_display_name", or any valid Ope-
nAlex work field. Default is "publication_year".

batch_size Number of IDs to process per API call (default: 50). Smaller batches help avoid
API rate limits.

save_dir Optional path to directory where intermediate results should be saved as RDS
files. If NULL (default), no saving occurs. Directory will be created if it doesn’t
exist.

Details

This function:

1. Accepts either a character vector of IDs or a data frame with a "CR" column

2. Splits semicolon-separated ID strings into individual IDs

3. Validates IDs against the pattern "^W\d+$"

4. Fetches specified variables from OpenAlex API in batches

5. Optionally saves each batch to disk as it’s processed

6. Handles API errors gracefully with informative messages

7. Includes delays between batches to respect API rate limits

10 get_openalex_fields

Value

A tibble with the following columns:

• id: The OpenAlex work ID

• One column for each requested variable (e.g., "publication_year", "doi", "type")

Rows without valid OpenAlex IDs or where API calls fail will have NA values.

Note

The OpenAlex API has rate limits. This function implements:

• Batch processing to reduce number of API calls

• 0.5 second delays between batches

• Error handling for failed API requests

• Progress messages to track execution

• Optional disk saving for data persistence

If you encounter rate limiting errors, consider reducing batch_size or implementing longer delays.

Examples

Not run:
From a character vector
ids <- c("W2261389918", "W1548650423", "W1504492735")
result <- get_openalex_fields(ids)

Fetch multiple variables
result <- get_openalex_fields(

ids,
variables = c("publication_year", "doi", "type")

)

From a data frame with CR column
oa_data <- data.frame(CR = c("W123;W456", "W789"))
result <- get_openalex_fields(oa_data)

Save intermediate results while downloading
result <- get_openalex_fields(

ids,
variables = c("publication_year", "source_display_name"),
save_dir = tempdir()

)

End(Not run)

plot_group_trajectories_2d 11

plot_group_trajectories_2d

Visualize 2D Technological Trajectories from Group Evolution

Description

Creates a 2D visualization of technological trajectories based on group similarity metrics, showing
the evolution of research groups over time with node size representing group importance and color
representing publication-year deviation.

Usage

plot_group_trajectories_2d(
groups_cumulative_trajectories,
group = "c1g1",
jaccard_similarity = 0.01,
prop_tracked_intra_group_treshold = 0.2,
label_type = "size",
label_vertical_position = 0,
label_horizontal_position = 0,
label_angle = 0,
time_span = NA,
show_legend = TRUE

)

Arguments

groups_cumulative_trajectories

A list with components groups_similarity and groups_attributes, typi-
cally produced by plot_groups_trajectories(). The groups_similarity
element must be a named list of edge tables (one per group) with at least from,
to, and weight; the groups_attributes element must be a named list of node
tables containing, among others, network_until, quantity_papers, prop_tracked_intra_group,
tracked_documents, and PY.sd.

group The specific group to visualize (default: "c1g1").
jaccard_similarity

Minimum Jaccard similarity threshold for connections (default: 0.1).
prop_tracked_intra_group_treshold

Minimum proportion of tracked intra-group documents for nodes to be included
(default: 0.2).

label_type Type of labels to display on nodes ("size" for weighted size or "id" for group
IDs).

label_vertical_position

Vertical adjustment for node labels (default: 0).
label_horizontal_position

Horizontal adjustment for node labels (default: 0).

12 plot_group_trajectories_3d

label_angle Angle for node labels (default: 0).
time_span Optional vector of years to display; if NA, shows all (default: NA).
show_legend Logical indicating whether to show the color legend (default: TRUE).

Value

A ggplot2 object visualizing the technological trajectories.

Examples

Not run:
Compute trajectories first
traj_data <- plot_groups_trajectories(groups_cumulative)

Visualize a specific group (pass the whole object; the function extracts what it needs internally)
plot_group_trajectories_2d(

groups_cumulative_trajectories = traj_data,
group = "c1g5",
jaccard_similarity = 0.3

)

End(Not run)

plot_group_trajectories_3d

Visualize 3D Technological Trajectories from Group Evolution

Description

Creates an interactive 3D visualization of technological trajectories showing the evolution of re-
search groups over time with node size representing group importance and color representing pub-
lication year deviation.

Usage

plot_group_trajectories_3d(
groups_cumulative_trajectories,
group = "component1_g01",
jaccard_similarity = 0.1,
prop_tracked_intra_group_treshold = 0.2,
label_type = "size",
label_vertical_position = 0,
label_horizontal_position = 0,
label_angle = 0,
time_span = NA,
show_legend = TRUE,
last_year_keywords = NULL

)

plot_group_trajectories_3d 13

Arguments

groups_cumulative_trajectories

A list containing two components:

• groups_similarity: Similarity data between groups
• groups_attributes: Attribute data for each group

group The specific group to visualize (default: "component1_g01")

jaccard_similarity

Minimum Jaccard similarity threshold for connections (default: 0.1)

prop_tracked_intra_group_treshold

Minimum proportion of tracked intra-group documents for nodes to be included
(default: 0.2)

label_type Type of labels to display on nodes ("size" for weighted size or "id" for group
IDs)

label_vertical_position

Vertical adjustment for node labels (default: 0)

label_horizontal_position

Horizontal adjustment for node labels (default: 0)

label_angle Angle for node labels (default: 0)

time_span Optional vector specifying the time span to display (default: NA shows all years)

show_legend Logical indicating whether to show the color legend (default: TRUE)

last_year_keywords

Optional keywords description for the last year (default: NULL)

Value

A plotly 3D visualization object

Examples

Not run:
First get trajectory data
traj_data <- sniff_groups_trajectories(groups_cumulative)

Visualize a specific group in 3D
plot_group_trajectory_3d(

groups_cumulative_trajectories = traj_data,
group = "component1_g05",
jaccard_similarity = 0.2

)

End(Not run)

14 plot_group_trajectories_lines_2d

plot_group_trajectories_lines_2d

Plot 2D trajectories as variable-width lines

Description

Creates a 2D line plot showing research trajectories over time, with highlighted trajectories dis-
played as variable-width lines and optional background trajectories shown in lowlight style. Edge
widths grow along each highlighted trajectory based on cumulative paper counts, and labels are
placed at trajectory endpoints.

Usage

plot_group_trajectories_lines_2d(
traj_data,
traj_filtered,
title = "Main trajectories",
width_range = c(0.8, 6),
use_raw_papers = FALSE,
label_nudge_x = 0.3,
label_size = 4,
show_only_highlighted = FALSE,
lowlight_width = 0.9,
lowlight_alpha = 0.22,
lowlight_color = "#9AA5B1"

)

Arguments

traj_data List containing trajectory data generated by detect_main_trajectories()
with components:

• graph: igraph object containing nodes and edges across years
• trajectories: tibble of all candidate trajectories (traj_id + nodes list)

traj_filtered Filtered trajectories tibble from filter_trajectories() containing the subset
to emphasize. Must contain columns:

• traj_id: trajectory identifiers
• nodes: list of character vectors (ordered by time or orderable)

title Plot title (default: "Main trajectories")

width_range Range for edge widths of highlighted trajectories (default: c(0.8, 6.0)). Width at
each segment is scaled by cumulative paper count up to the next node.

use_raw_papers Whether to use raw paper counts for width scaling (default: FALSE). If TRUE,
uses raw quantity_papers; if FALSE, uses weighted size: quantity_papers
* prop_tracked_intra_group.

label_nudge_x Horizontal nudge for trajectory end labels to prevent overlap with nodes (default:
0.30)

plot_group_trajectories_lines_2d 15

label_size Text size for trajectory end labels (default: 4)
show_only_highlighted

Whether to show only highlighted trajectories (default: FALSE). If TRUE, hides
all non-highlighted trajectory lines; if FALSE, draws lowlight background.

lowlight_width Line width for lowlight (background) edges (default: 0.9)

lowlight_alpha Transparency for lowlight edges (default: 0.22; smaller values = more transpar-
ent)

lowlight_color Color for lowlight edges (default: "#9AA5B1" - neutral gray)

Details

This function visualizes research trajectories as variable-width lines:

• Highlighted trajectories (traj_filtered) are colored lines with widths proportional to cu-
mulative paper counts (raw or weighted)

• Background trajectories (when show_only_highlighted = FALSE) are shown as thin, trans-
parent lines

• Trajectory labels are placed at the end of each highlighted trajectory

• The x-axis represents publication years using a Sugiyama layout

• The y-axis shows vertical positions from the layout (no intrinsic meaning)

• Colors are assigned only to highlighted trajectories present in the plot

When traj_data$trajectories is available and show_only_highlighted = FALSE, the lowlight
layer shows only edges that belong to any trajectory but not the highlighted set. Otherwise, it shows
the entire graph minus highlighted edges.

Value

A ggplot object displaying the trajectory network

Examples

Not run:
Detect main trajectories first
traj_data <- detect_main_trajectories(your_graph_data)

Filter trajectories of interest
filtered_traj <- filter_trajectories(traj_data$trajectories,

min_papers = 10)

Create the plot
plot_group_trajectories_lines_2d(

traj_data = traj_data,
traj_filtered = filtered_traj,
title = "Key Research Trajectories",
width_range = c(1, 8),
show_only_highlighted = FALSE

)

16 plot_group_trajectories_lines_3d

End(Not run)

plot_group_trajectories_lines_3d

Plot 3D trajectories as variable-width lines

Description

Creates an interactive 3D plot showing research trajectories with time on the x-axis, route separation
on the y-axis, and cumulative paper counts on the z-axis. Highlighted trajectories are displayed
as growing-thickness lines, with optional background trajectories and network context in lowlight
style.

Usage

plot_group_trajectories_lines_3d(
traj_data,
traj_filtered,
width_range_hi = c(4, 12),
width_range_lo = c(1.2, 3),
use_raw_papers = TRUE,
connect_only_existing_edges = TRUE,
show_labels = TRUE,
show_only_highlighted = FALSE,
label_size = 18,
hover_font_size = 12,
lowlight_width = 1,
lowlight_alpha = 0.9,
lowlight_color = "#9AA5B1"

)

Arguments

traj_data List containing trajectory data generated by detect_main_trajectories()
with components:

• graph: igraph object containing nodes and edges across years
• trajectories: tibble of all candidate trajectories (traj_id + nodes list)

traj_filtered Filtered trajectories tibble from filter_trajectories() containing the subset
to emphasize. Must contain columns:

• traj_id: trajectory identifiers
• nodes: list of character vectors (ordered by time or orderable)

width_range_hi Width range for highlighted trajectory segments (default: c(4, 12)). Segment
widths scale with cumulative paper counts.

width_range_lo Baseline width range used to compute constant lowlight width (default: c(1.2,
3)). The mean of this range determines lowlight width.

plot_group_trajectories_lines_3d 17

use_raw_papers Whether to use raw paper counts for z-axis scaling (default: TRUE). If TRUE,
uses raw quantity_papers; if FALSE, uses weighted size: quantity_papers
* prop_tracked_intra_group.

connect_only_existing_edges

Whether to draw only edges that exist in the graph (default: TRUE). If FALSE,
draws all consecutive node pairs in trajectories regardless of graph edges.

show_labels Whether to add end-of-trajectory labels inside the 3D plot (default: TRUE)
show_only_highlighted

Whether to show only highlighted trajectories (default: FALSE). If TRUE, hides
all background network and lowlight trajectories.

label_size Font size for trajectory end labels (default: 18)
hover_font_size

Font size for hover tooltips (default: 12)

lowlight_width Line width for lowlight trajectories and background network (default: 1)

lowlight_alpha Transparency for lowlight elements (default: 0.9)

lowlight_color Color for lowlight elements (default: "#9AA5B1" - neutral gray)

Details

This function creates an interactive 3D visualization of research trajectories:

• X-axis: Publication year (parsed from vertex names like "y2007g05")

• Y-axis: "Route" (Sugiyama layout coordinate to separate trajectories vertically)

• Z-axis: Cumulative documents (raw or weighted) along each trajectory

Key features:

• Highlighted trajectories (traj_filtered) are colored lines with widths that grow propor-
tionally to cumulative paper counts

• Lowlight trajectories (when show_only_highlighted = FALSE) show other trajectories as
constant-width lines

• Background network (when show_only_highlighted = FALSE) provides context with thin
gray edges

• Hover tooltips show detailed information at each trajectory point

• End labels identify highlighted trajectories (when show_labels = TRUE)

• Edge validation (when connect_only_existing_edges = TRUE) ensures only actual graph
edges are drawn

The function uses a Sugiyama layout for the y-axis coordinates and cumulative sums of paper counts
for the z-axis values. Colors for highlighted trajectories are assigned using RColorBrewer’s Set2
palette (for <=8 trajectories) or a hue-based palette (for more trajectories).

Value

A plotly interactive 3D plot object

18 read_openalex

Examples

Not run:
Detect main trajectories first
traj_data <- detect_main_trajectories(your_graph_data)

Filter trajectories of interest
filtered_traj <- filter_trajectories(traj_data$trajectories,

min_papers = 10)

Create interactive 3D plot
plot_group_trajectories_lines_3d(

traj_data = traj_data,
traj_filtered = filtered_traj,
width_range_hi = c(3, 10),
use_raw_papers = FALSE,
show_labels = TRUE

)

Minimal view with only highlighted trajectories
plot_group_trajectories_lines_3d(

traj_data = traj_data,
traj_filtered = filtered_traj,
show_only_highlighted = TRUE,
label_size = 16

)

End(Not run)

read_openalex Read and Process OpenAlex data

Description

Parse datasets exported from OpenAlex in two ways: (1) a CSV file exported in the browser, or
(2) a data frame obtained via the {openalexR} API helpers. The function standardizes fields to
common bibliographic tags (e.g., AU, SO, CR, PY, DI) and returns a tidy tibble.

Usage

read_openalex(file, format = "csv")

Arguments

file For format = "csv", a character string with a local path or an HTTP(S) URL to
a CSV export. For format = "api", a data frame produced by {openalexR} for
the works entity.

format Either "csv" (CSV export) or "api" (data frame from {openalexR}).

read_openalex 19

Details

CSV mode (format = "csv"):

• If file is a URL, it is downloaded to a temporary file before parsing (a progress message is
printed).

• Selected fields are mapped to standardized tags: id_short (short OpenAlex ID), SR (= id_short),
PY (= publication_year), TI (= title), DI (= doi), DT (= type), DE (= keywords.display_name),
AB (= abstract), AU (= authorships.author.display_name), SO (= locations.source.display_name),
C1 (= authorships.countries), TC (= cited_by_count), SC (= primary_topic.field.display_name),
CR (= referenced_works, with the https://openalex.org/ prefix stripped), and DB = "openalex_csv".

• PY is coerced to numeric; a helper column DI2 (uppercase, punctuation-stripped variant of DI)
is added; columns with all-caps tags are placed first and DI2 is relocated after DI.

API mode (format = "api"):

• file must be a data frame containing at least column id; typically this is returned by openalexR::oa_request()
+ openalexR::oa2df() or similar.

• Records are filtered to type %in% c("article","review") and deduplicated by id.

• The function derives:

– id_short (= id without the https://openalex.org/ prefix) and SR (= id_short);
– CR: concatenated short IDs from referenced_works (semicolon-separated);
– DE: concatenated keyword names (lower case) from keywords;
– AU: concatenated author names (upper case) from authorships;
– plus core fields PY (= publication_year), TC (= cited_by_count), TI (= title), AB (=
abstract), DI (= doi), and DB = "openalex_api".

• The result keeps one row per id and may include original columns from the input (via a right
join), after constructing the standardized fields above.

Value

A tibble with standardized bibliographic columns. Typical output includes: id_short, AU, DI, CR,
SO, DT, DE, AB, C1, TC, SC, SR, PY, and DB (source flag: "openalex_csv" or "openalex_api"). See
Details.

Supported inputs

• format = "csv" — a local path or an HTTP(S) URL to an OpenAlex CSV export.

• format = "api" — a data frame produced by {openalexR} for the works entity (with the
usual OpenAlex columns, including list-columns such as keywords, authorships, and referenced_works).

See Also

OpenAlex R client: oa_request, oa2df. Importers for Web of Science: read_wos.

20 read_wos

Examples

Not run:
CSV export (local path)
x <- read_openalex("openalex-works.csv", format = "csv")

Using the API with openalexR
library(openalexR)
url_api <- "https://api.openalex.org/works?page=1&filter=primary_location.source.id:s121026525"
df_api <- openalexR::oa_request(query_url = url_api) |>

openalexR::oa2df(entity = "works")
y <- read_openalex(df_api, format = "api")

End(Not run)

read_wos Read Web of Science exported files

Description

Parse Web of Science (WoS) export files in multiple formats and return a tidy table. The func-
tion automatically dispatches to a specialized parser based on the format argument and can also
download from a URL if file points to an http:// or https:// resource.

Usage

read_wos(file, format = "bib", normalized_names = TRUE)

Arguments

file Character scalar or vector. Path(s) to a WoS export file, or a single URL (http://
or https://) pointing to a WoS export.

format Character scalar. Export format; one of "bib", "ris", "txt-plain-text", or
"txt-tab-delimited".

normalized_names

Logical. If TRUE (default), use standardized column names when possible; if
FALSE, keep original WoS field tags.

Details

• file may be a single path/URL or a vector of paths; multiple files will be combined row-wise
when applicable.

• When file is a URL, the file is downloaded to a temporary path before parsing (a progress
message is printed).

• If normalized_names = TRUE, selected WoS tags are mapped to standardized names (e.g., AU
-> author, TI -> title, PY -> year, DI -> doi, DE -> keywords, SR -> unique_id, etc.; the
exact mapping depends on the format). Otherwise, original field tags are preserved.

sniff_citations_cycle_time 21

• The output includes:

– DI2: an uppercase, punctuation-stripped variant of DI (if present),
– PY: coerced to numeric (when present),
– DB: a provenance flag indicating the source/format and whether names were normalized.

• Columns with ALL-CAPS tags (e.g., AU, TI, PY) are placed first, followed by other columns,
and DI2 is relocated just after DI.

Value

A tibble with the parsed WoS records. See Details for notes on added/coerced columns (DI2, PY,
DB) and column ordering.

Supported formats

• "bib" — BibTeX export

• "ris" — RIS export

• "txt-plain-text" — Plain-text export

• "txt-tab-delimited" — Tab-delimited export

See Also

Internal parsers used by this function: read_wos_bib, read_wos_ris, read_wos_plain, read_wos_tab.

Examples

bib_file <- system.file("extdata", "sample_wos.bib", package = "birddog")
M <- read_wos(bib_file, format = "bib", normalized_names = TRUE)
head(M)

Not run:
load data from a URL
M <- read_wos("https://example.com/savedrecs.bib", format = "bib")

End(Not run)

sniff_citations_cycle_time

Calculate Citation Cycle Time (CCT) indicator

Description

Calculates the Citation Cycle Time (CCT) to measure the pace of scientific or technological progress
in a publication network. Based on Kayal (1999), the indicator measures the median age of cited
publications, where lower values indicate faster knowledge replacement cycles.

22 sniff_citations_cycle_time

Usage

sniff_citations_cycle_time(
network,
scope = "groups",
start_year = NULL,
end_year = NULL,
tracked_cr_py = NULL,
batch_size = 50,
min_papers_per_year = 3,
rolling_window = NULL

)

Arguments

network Required. Network object containing publication data. For scope = "groups":
object returned by sniff_groups(). For scope = "network": network object
(tbl_graph or igraph).

scope Analysis scope. Either "groups" (default) for separate group analysis or "network"
for complete network analysis.

start_year, end_year
Start and end years for temporal analysis. If not specified, uses minimum and
maximum years found in the data.

tracked_cr_py Pre-processed citation year data (optional). A tibble with columns CR (OpenAlex
work ID) and CR_PY (publication year). If provided, skips fetching data from
OpenAlex API. Useful for avoiding repeated API calls.

batch_size For OpenAlex data: number of IDs to process per API call (default: 50). Smaller
batches help avoid API rate limits, larger batches process data faster but may
trigger rate limiting.

min_papers_per_year

Minimum number of papers required in a given year to compute CCT. Years
with fewer papers are reported as NA (default: 3).

rolling_window Optional integer for rolling window smoothing. If provided, CCT values are
smoothed using a centered moving average of the specified width (e.g., 3 for a
3-year window). Default is NULL (no smoothing).

Details

The Citation Cycle Time (CCT) is calculated following Kayal (1999):

1. Extract citation IDs from the network’s CR column

2. Fetch publication years for cited works from OpenAlex API using get_openalex_fields()

3. For each publication, calculate the age of each cited reference (PY - CR_PY)

4. Calculate the median citation age per publication

5. For each year, calculate the median of per-publication medians across all publications in that
year (annual mode)

sniff_citations_cycle_time 23

Lower CCT values indicate that publications are citing more recent work, suggesting a faster pace
of knowledge replacement. A sudden drop in CCT within a group signals potential scientific emer-
gence.

The function automatically handles:

• Splitting semicolon-separated citation IDs

• Batch processing of OpenAlex API requests

• Filtering invalid citations (where cited work was published after citing work)

• Skipping years with too few papers (min_papers_per_year)

• Optional rolling window smoothing for noisy time series

• Creating temporal plots for each group

Value

A list with the following components:

data Tibble with CCT data containing columns: group, year, index

plots Named list of plotly objects showing temporal evolution of CCT for each group.
Each plot shows both absolute CCT values and year-over-year differences.

years_range Named vector with start_year and end_year used in the analysis

tracked_cr_py Citation year data with columns CR and CR_PY. Can be saved and reused in
subsequent analyses to avoid repeated API calls.

References

Kayal AA, Waters RC. An empirical evaluation of the technology cycle time indicator as a mea-
sure of the pace of technological progress in superconductor technology. IEEE Transactions on
Engineering Management. 1999;46(2):127-31. doi:10.1109/17.759138

See Also

sniff_groups(), get_openalex_fields(), indexes_plots()

Examples

Not run:
Group analysis
results <- sniff_citations_cycle_time(network_groups, scope = "groups")

Network analysis
results_network <- sniff_citations_cycle_time(complete_network, scope = "network")

With rolling window smoothing
results_smooth <- sniff_citations_cycle_time(

network_groups,
scope = "groups",
rolling_window = 3

)

https://doi.org/10.1109/17.759138

24 sniff_components

Accessing results
cct_data <- results$data
plots <- results$plots
plots$c1g1 # View plot for specific group

Reuse citation data to avoid repeated API calls
saved_citations <- results$tracked_cr_py
results2 <- sniff_citations_cycle_time(

network_groups,
tracked_cr_py = saved_citations

)

End(Not run)

sniff_components Identify and Analyze Network Components

Description

Detects connected components in a citation network and computes summary statistics for each
component. Returns both the component information and an updated network with component
labels.

Usage

sniff_components(net)

Arguments

net A network object (tbl_graph or igraph) generated by sniff_network()

Value

A list with two elements:

components A tibble with component statistics containing:

• component: Component identifier (e.g., "c1")

• quantity_publications: Number of publications in component

• average_age: Mean publication year of component

network The input network with added component labels

sniff_entropy 25

Examples

Not run:
Create a network first
data <- read_wos("savedrecs.txt")
net <- sniff_network(data)

Analyze components
result <- sniff_components(net)

Access component information
result$components

Get network with component labels
component_net <- result$network

End(Not run)

sniff_entropy Calculate Entropy Based on Keywords Over Time

Description

Computes the normalized Shannon entropy of keyword distributions from scientific publications
over a specified time range. Entropy measures the diversity and evenness of keyword usage within
research groups or the entire network.

Usage

sniff_entropy(network, scope = "groups", start_year = NULL, end_year = NULL)

Arguments

network A network object to analyze. For scope = "groups", this should be the output
of sniff_groups(). For scope = "network", this should be a tbl_graph or
igraph object from sniff_network().

scope Character specifying the analysis scope: "groups" for multiple groups or "net-
work" for the entire network (default: "groups").

start_year Starting year for entropy calculation. If NULL, uses the minimum publication
year found in the network data.

end_year Ending year for entropy calculation. If NULL, uses the maximum publication
year found in the network data.

26 sniff_entropy

Details

The function calculates the normalized Shannon entropy (Pielou’s evenness index) based on Shan-
non’s information theory (Shannon, 1948). For each year, entropy is computed from the keyword
distribution of publications in that year (annual mode).

The normalized entropy is calculated as:

J ′ =
H

Hmax
=

−
∑n

i=1 pi log2 pi
log2 n

where pi is the relative frequency of keyword i, n is the number of unique keywords, and Hmax =
log2 n is the maximum possible entropy for n categories.

Entropy values range from 0 to 1, where:

• 0 indicates minimal diversity (one dominant keyword)

• 1 indicates maximal diversity (all keywords equally frequent)

A sudden increase in entropy may signal the emergence of new research topics, while a decrease
suggests thematic convergence.

Value

A list with three components:

data A tibble containing entropy values for each group and year

plots A list of plotly objects visualizing entropy trends for each group

years_range A vector with the start_year and end_year used in calculations

References

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal,
27(3), 379-423. doi:10.1002/j.15387305.1948.tb01338.x

Pielou, E. C. (1966). The measurement of diversity in different types of biological collections.
Journal of Theoretical Biology, 13, 131-144.

See Also

sniff_groups, sniff_network, indexes_plots

Examples

Not run:
Calculate entropy for groups from sniff_groups() output
groups_data <- sniff_groups(your_network_data)
entropy_results <- sniff_entropy(groups_data, scope = "groups")

Calculate entropy for entire network
entropy_results <- sniff_entropy(network_data, scope = "network")

Specify custom year range

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

sniff_groups 27

entropy_results <- sniff_entropy(
groups_data,
scope = "groups",
start_year = 2010,
end_year = 2020

)

Access results
entropy_data <- entropy_results$data
entropy_plots <- entropy_results$plots

End(Not run)

sniff_groups Detect and analyze groups in a scientific network

Description

This function identifies and analyzes groups (communities) within scientific networks created from
articles and patents data. It can apply different clustering algorithms to detect technological trajec-
tories and emerging scientific fields.

Usage

sniff_groups(
comps,
min_group_size = 10,
keep_component = c("c1"),
cluster_component = c("c1"),
algorithm = "fast_greedy",
seed = 888L

)

Arguments

comps A list containing network components, typically generated by sniff_components().
Must include a network object with ’component’ and ’PY’ (publication year)
vertex attributes.

min_group_size Minimum size for a group to be included in results (default = 10). Groups with
fewer members will be filtered out.

keep_component Character vector specifying which network components to process (default =
"c1"). Can include multiple components.

cluster_component

Character vector specifying which components should be clustered (default =
"c1"). Components not listed here will be treated as single groups.

28 sniff_groups

algorithm Community detection algorithm to use (default = "fast_greedy"). Options in-
clude: "louvain", "walktrap", "edge_betweenness", "fast_greedy", or "leiden".

seed Random seed for reproducible results (default = 888L). Only applies to algo-
rithms that use random initialization like Louvain.

Details

The function first validates the input network, then applies the specified clustering algorithm to de-
tect communities within the network. It calculates statistics for each detected group and returns the
results along with the augmented network. The function can handle multiple network components
simultaneously, applying clustering only to specified components.

Value

A list with three elements:

• aggregate: A data frame with group statistics including group name, number of papers, and
average publication year

• network: The input network with added group attributes

• pubs_by_year: Publication counts by group and year

See Also

sniff_components() for creating the input network components

Examples

Not run:
Assuming 'comps' is output from sniff_components()
groups <- sniff_groups(comps,

min_group_size = 15,
algorithm = "leiden",
seed = 888L

)

Access group statistics
groups$aggregate
groups$network
groups$pubs_by_year

End(Not run)

sniff_groups_attributes 29

sniff_groups_attributes

Calculate and Visualize Group Attributes from Scientific Networks

Description

This function analyzes publication growth rates and other attributes for research groups identified
in scientific networks. It calculates growth rates using exponential models, creates horizon plots for
visualization, and generates summary tables.

Usage

sniff_groups_attributes(
groups,
growth_rate_period = 2010:2022,
horizon_plot = TRUE,
show_results = TRUE,
assign_result = NULL

)

Arguments

groups A list containing network data with publications by year and group information.
Must include elements: network, pubs_by_year, and aggregate.

growth_rate_period

Numeric vector of years to use for growth rate calculation (default: 2010:2024).
horizon_plot Logical indicating whether to include horizon plots in the output table (default:

TRUE).
show_results Logical indicating whether to print results to console (default: TRUE).
assign_result Character string specifying a variable name to assign the results to in the global

environment (default: NULL).

Details

The function performs the following steps:

1. Calculates growth rates using exponential models for each group
2. Processes publication age and doubling time metrics
3. Optionally creates horizon plots for each group’s publication trend
4. Generates a comprehensive summary table

Value

A list with two components:

• attributes_table: A gt table showing group attributes including growth rates
• regression: A list of model summaries for each group’s growth rate calculation

30 sniff_groups_cumulative

Examples

Not run:
Assuming groups is output from sniff_groups()
groups_attributes <- sniff_groups_attributes(groups,

growth_rate_period = 2010:2022,
horizon_plot = TRUE

)

View the results table
print(groups_attributes$attributes_table)

Access model summaries
groups_attributes$regression

End(Not run)

sniff_groups_cumulative

Analyze Cumulative Network Groups Over Time

Description

Performs cumulative community detection on a network over specified time spans, returning group
statistics and keyword analysis for each time period.

Usage

sniff_groups_cumulative(
comps,
time_span = NULL,
min_group_size = 10,
keep_component = c("c1"),
cluster_component = c("c1"),
top_n_keywords = 10,
algorithm = "fast_greedy",
seed = 888L

)

Arguments

comps A list containing network components, typically generated by sniff_components().
Must include a network object with ’component’ and ’PY’ (publication year)
vertex attributes.

time_span Numeric vector of years to analyze (default: 2000:2024).

min_group_size Minimum size for a cluster to be retained (default = 10).

sniff_groups_cumulative 31

keep_component Character vector specifying which network components to process (default =
"c1"). Can include multiple components.

cluster_component

Character vector specifying which components should be clustered (default =
"c1"). Components not listed here will be treated as single groups.

top_n_keywords Number of top keywords to extract per group (default = 10).

algorithm Community detection algorithm to use. One of: "louvain", "walktrap", "edge_betweenness",
"fast_greedy" (default), or "leiden".

seed Random seed for reproducible results (default = 888L). Only applies to algo-
rithms that use random initialization like Louvain.

Value

A named list (by year) where each element contains:

groups A tibble with group statistics and top keywords

documents A tibble mapping documents to groups

network The cumulative network up to that year

Examples

Not run:
Typical pipeline:
data <- read_wos("savedrecs.txt")
net <- sniff_network(data)
comps <- sniff_components(net)

Cumulative analysis
groups_cumulative <- sniff_groups_cumulative(

comps,
time_span = 2010:2020,
keep_component = c("c1", "c2"),
cluster_component = c("c1"),
algorithm = "leiden",
seed = 888L

)

Access results for 2015
groups_cumulative[["network_until_2015"]]$groups

End(Not run)

32 sniff_groups_cumulative_citations

sniff_groups_cumulative_citations

Calculate Cumulative Citations by Group and Year

Description

This function calculates cumulative citations for papers within research groups, tracking how cita-
tions accumulate over time for highly cited papers.

Usage

sniff_groups_cumulative_citations(groups, min_citations = 5)

Arguments

groups A list containing network data with the following components:

• network: A tidygraph network object
• pubs_by_year: Publication counts by year
• aggregate: Aggregate network statistics

min_citations Minimum number of citations for a paper to be included in analysis (default:
10).

Details

For each research group, the function:

• Identifies papers with citations above the threshold

• Tracks citations to these papers year by year

• Calculates cumulative citation patterns

• Computes various growth metrics for citation analysis

Works with both Web of Science (WOS) and OpenAlex data formats.

Value

A named list (by research group) where each element contains a tibble with:

• group: Research group identifier

• SR: Paper identifier

• TC: Total citations

• PY: Publication year

• Ki: Total network citations

• citations_by_year: A tibble with annual citation counts (PY: year, citations: count)

• growth_power: Growth power score (0-100)

sniff_groups_hubs 33

• growth_consistency: Percentage of years with citations

• peak_momentum: Highest 3-year rolling average citation count

• early_impact: Citations in first 5 years

• recent_momentum: Citations in last 3 years

• acceleration_factor: Ratio of late to early citations

Examples

Not run:
Assuming groups is output from sniff_groups()
Calculate cumulative citations
groups_cumulative_citations <- sniff_groups_cumulative_citations(groups, min_citations = 5)
View results for first group
head(groups_cumulative_citations[[1]])

End(Not run)

sniff_groups_hubs Identify Hub Papers in Research Groups

Description

This function analyzes citation networks to identify hub papers within research groups based on
their citation patterns. It calculates several metrics (Zi, Pi) to classify papers into different hub
categories.

Usage

sniff_groups_hubs(groups, min_citations = 1)

Arguments

groups A list containing network data with the following components:

• network: A tidygraph network object
• pubs_by_year: Publication counts by year
• aggregate: Aggregate network statistics

min_citations Minimum number of citations for a paper to be considered (default: 1)

Details

The function classifies papers into hub categories based on:

• R5: Knowledge hubs (Zi >= 2.5 and Pi <= 0.3)

• R6: Bridging hubs (Zi >= 2.5 and 0.3 < Pi <= 0.75)

• R7: Boundary-spanning hubs (Zi >= 2.5 and Pi > 0.75)

34 sniff_groups_keywords

Value

A tibble containing:

• group: Research group identifier

• SR: Paper identifier

• TC: Total citations

• Ki: Total citations from all groups

• ki: Citations from within the same group

• Zi: Standardized within-group citation score

• Pi: Citation diversity index

• zone: Hub classification ("noHub", "R5", "R6", "R7")

Examples

Not run:

Assuming 'groups' is output from sniff_groups()

Identify hub papers
hubs <- sniff_groups_hubs(groups, min_citations = 5)

View results
head(hubs)

End(Not run)

sniff_groups_keywords Extract representative keywords from grouped nodes

Description

This function processes nodes grouped in a network (typically by community detection), and ex-
tracts the most frequent and the most distinctive keywords (using TF-IDF) from a descriptor field
such as keywords or subject terms.

Usage

sniff_groups_keywords(net_groups, n_terms = 15, min_freq = 1, sep = ";")

sniff_groups_stm_prepare 35

Arguments

net_groups A list containing a network component of class tbl_graph, where each node
has at least two attributes: group and DE.

n_terms Integer. The number of top terms to return per group, both by frequency and by
TF-IDF. Default is 15.

min_freq Integer. Minimum frequency a term must have in a group to be considered.
Default is 2.

sep Character. Separator used in the DE field to split multiple terms. Default is ";".

Value

A tibble with one row per group, containing two columns:

• term_freq: the most frequent terms (with raw frequency).

• term_tfidf: the most distinctive terms (with TF-IDF scores).

Examples

Not run:
Assuming 'groups' is output from sniff_groups()
groups_keywords <- sniff_groups_keywords(groups)

End(Not run)

sniff_groups_stm_prepare

Prepare Text Data and Analyze Topic Models

Description

Processes text data for structural topic modeling and performs topic number selection analysis,
returning both the processed data and diagnostic plots.

Usage

sniff_groups_stm_prepare(
groups,
group_to_stm = "g01",
search_topics = c(5:40, 45, 50, 55, 60),
seed = 1234,
cores = 1

)

36 sniff_groups_stm_run

Arguments

groups A list containing network data with a ’network’ component

group_to_stm Character string specifying which research group to process (default: ’g01’)

search_topics Numeric vector of topic numbers to evaluate (default: c(5:40, 45, 50, 55, 60))

seed Random seed for reproducibility (default: 1234)

cores Number of CPU cores to use (default: 1)

Value

A list containing:

• result: The searchK results object

• plots: A list containing two ggplot objects (p1: metrics by K, p2: exclusivity vs coherence)

• df_prep: Output from stm::textProcessor

• df_doc: Output from stm::prepDocuments

• df: Original filtered data

Examples

Not run:
output <- sniff_groups_stm_prepare(network_data)
output$plots$p1 # View first plot
output$result # Access search results

End(Not run)

sniff_groups_stm_run Run Structural Topic Modeling Analysis

Description

Performs structural topic modeling on prepared text data and returns topic proportions and top
documents for each topic.

Usage

sniff_groups_stm_run(groups_stm_prepare, k_topics = 12, n_top_documents = 50)

Arguments
groups_stm_prepare

A prepared STM object from sniff_groups_stm_prepare()

k_topics Number of topics to model (default: 12)
n_top_documents

Number of top documents to each topic (default: 50)

sniff_groups_terms 37

Details

This function:

• Fits an STM model with specified number of topics

• Identifies top terms for each topic

• Calculates topic proportions

• Identifies top documents for each topic

Value

A list containing:

• topic_proportion2: Data frame with topic proportions and top terms

• tab_top_documents: Data frame of top documents for each topic

Examples

Not run:
Prepare data first
stm_data <- sniff_groups_stm_prepare(network_data)

Run topic modeling
stm_results <- sniff_groups_stm_run(stm_data, k_topics = 15)

Access results
stm_results$topic_proportion2 # Topic proportions and terms
stm_results$tab_top_documents # Top documents per topic

End(Not run)

sniff_groups_terms Extract and Analyze Key Terms from Research Groups

Description

Identifies and extracts key terms from titles and abstracts of publications within different research
groups using natural language processing techniques, and computes term statistics including TF-
IDF scores.

Usage

sniff_groups_terms(
net_groups,
algorithm = "rake",
phrase_pattern = "(A|N)*N(P+D*(A|N)*N)*",
model_dir = tempdir(),

38 sniff_groups_terms

n_cores = 1,
show_progress = TRUE,
n_terms = 15,
min_freq = 2,
digits = 4

)

Arguments

net_groups A list containing network data with publication information. Must include el-
ements: network (with vertex attributes ’group’, ’TI’, ’AB’), pubs_by_year,
and aggregate.

algorithm Term extraction algorithm to use. Options are:

• "rake" - Rapid Automatic Keyword Extraction (default)
• "pointwise" - Pointwise Mutual Information
• "phrase" - Phrase pattern matching

phrase_pattern Regular expression pattern for phrase extraction when algorithm = "phrase" (de-
fault: "(A|N)N(P+D(A|N)N)")

model_dir Directory where UDPipe models are stored (default: tempdir())

n_cores Number of CPU cores to use for parallel processing (default: 1)

show_progress Logical indicating whether to show progress bar (default: TRUE)

n_terms Number of top terms to return in summary table (default: 15)

min_freq Minimum frequency threshold for terms (default: 2)

digits Number of decimal places to round numerical values (default: 4)

Details

This function performs the following steps:

1. Validates input structure and parameters

2. Loads the UDPipe language model from the specified directory

3. Processes text data (titles and abstracts) for each group

4. Applies the selected term extraction algorithm (RAKE, PMI, or phrase patterns)

5. Computes term frequencies and TF-IDF scores

6. Returns ranked terms for each research group with comprehensive statistics

The function uses UDPipe for tokenization, lemmatization and POS tagging before term extraction.
For phrase extraction, the default pattern finds noun phrases.

Value

A list with two components:

• terms_by_group: A named list (by group) of data frames containing extracted terms with
statistics

• terms_table: A summary tibble with top terms by frequency and TF-IDF for each group

sniff_groups_trajectories 39

Examples

Not run:
Assuming groups is output from sniff_groups()
terms <- sniff_groups_terms(groups, algorithm = "rake")

View terms for first group
head(terms$terms_by_group[[1]])

View summary table
print(terms$terms_table)

Customized extraction with custom model directory
net_groups_terms <- sniff_groups_terms(net_groups,

algorithm = "phrase",
model_dir = tempdir(),
n_terms = 10,
min_freq = 3,
n_cores = 4

)

End(Not run)

sniff_groups_trajectories

Detect Technological Trajectories from Grouped Documents

Description

This function analyzes the evolution of document groups over time to detect technological trajecto-
ries and scientific emergence patterns. It computes similarity measures between groups across time
periods and tracks their attributes.

Usage

sniff_groups_trajectories(
groups_cumulative,
min_group_size = 10,
top_n_keywords = 3

)

Arguments

groups_cumulative

A list of cumulative group data over time, typically produced by other functions
in the birddog package. Each element should contain network, documents, and
groups data.

40 sniff_key_route

min_group_size Minimum number of documents required for a group to be considered (default:
10). Smaller groups will be filtered out.

top_n_keywords Number of top keywords to consider when analyzing group characteristics (de-
fault: 3).

Value

A list with three components:

• groups_attributes: A list of data frames containing attributes for each tracked group

• groups_similarity: A list of data frames containing Jaccard similarity measures between groups
across time periods

• docs_per_group: A data frame containing document IDs for all groups across time periods

Examples

Not run:
Assuming you have cumulative group data:
trajectories <- sniff_groups_trajectories(groups_cumulative, min_group_size = 15)

End(Not run)

sniff_key_route Identify Key Routes in Citation Networks

Description

This function identifies and visualizes key citation routes within scientific networks by analyzing
the most significant citation paths between publications. The algorithm implements the key-route
search from the integrated main path analysis approach described in Liu & Lu (2012).

Usage

sniff_key_route(network, scope = "network", citations_percentage = 1)

Arguments

network A network object of class tbl_graph or igraph containing citation data, or a
list object generated by sniff_groups() when scope = "groups"

scope Character string specifying the analysis scope. Must be either "network" (for full
network analysis) or "groups" (for group-wise analysis of a grouped network)

citations_percentage

Numeric value between 0 and 1 indicating the percentage of top SPC edges
eligible for the key-route path. Default is 1 (all edges)

sniff_key_route 41

Details

The function implements the key-route search from Liu & Lu (2012):

1. Computes Search Path Count (SPC) for each citation link using an efficient O(V+E) algorithm
based on topological sort. SPC measures how many source-to-sink paths traverse each link.

2. Selects the key-route: the link with the highest SPC value.

3. Searches forward from the end node of the key-route, greedily following the outgoing link
with the highest SPC, until a sink is reached.

4. Searches backward from the start node of the key-route, greedily following the incoming link
with the highest SPC, until a source is reached.

The SPC is computed as forward[u] * backward[v] for each edge (u, v), where forward[u]
counts paths from any source to u and backward[v] counts paths from v to any sink (Batagelj,
2003). This guarantees the most significant link is always included in the key-route path.

Value

A list containing for each group:

• plot - A ggplot2 object visualizing the key citation route

• data - A tibble with publication details (name, TI, AU, PY) of nodes in the key route

References

Liu JS, Lu LYY. An integrated approach for main path analysis: Development of the Hirsch in-
dex as an example. Journal of the American Society for Information Science and Technology.
2012;63(3):528-542. doi:10.1002/asi.21692

Batagelj V. Efficient algorithms for citation network analysis. University of Ljubljana, Institute
of Mathematics, Physics and Mechanics, Department of Theoretical Computer Science, Preprint
Series. 2003;41:897.

Examples

Not run:
Example with network scope
result <- sniff_key_route(my_network, scope = "network", citations_percentage = 0.8)

Example with groups scope
grouped_network <- sniff_groups(data)
result <- sniff_key_route(grouped_network, scope = "groups")

Access results for a specific group
result$group_name$plot
result$group_name$data

End(Not run)

https://doi.org/10.1002/asi.21692

42 sniff_network

sniff_network Create Citation Networks from Bibliographic Data

Description

Constructs different types of citation networks from bibliographic data imported from Web of Sci-
ence or OpenAlex using birddog's reading functions.

Usage

sniff_network(dataframe, type = "direct citation", external_references = FALSE)

Arguments

dataframe A data frame imported via read_openalex() or read_wos()

type Type of network to create. One of:

• "direct citation": Direct citation links between documents
• "bibliographic coupling": Documents linked by shared references

external_references

Logical indicating whether to include external references (references not in the
original dataset) as nodes in the network

Value

A tbl_graph object from the tidygraph package representing the citation network. Node attributes
include bibliographic information from the input data.

Examples

Not run:
Using OpenAlex data
oa_data <- read_openalex("works.csv", format = "csv")
net <- sniff_network(oa_data, type = "direct citation")

Using WoS data
wos_data <- read_wos("savedrecs.txt")
net <- sniff_network(wos_data, type = "bibliographic coupling", external_references = TRUE)

End(Not run)

Index

∗ package
birddog-package, 3

attach_docs_to_vertices, 3

birddog (birddog-package), 3
birddog-package, 3

detect_main_trajectories, 4
detect_main_trajectories(), 8

filter_trajectories, 7
filter_trajectories(), 6

get_openalex_fields, 9
get_openalex_fields(), 23

indexes_plots, 26
indexes_plots(), 23

oa2df, 19
oa_request, 19

plot_group_trajectories_2d, 11
plot_group_trajectories_3d, 12
plot_group_trajectories_lines_2d, 14
plot_group_trajectories_lines_2d(), 6,

8
plot_group_trajectories_lines_3d, 16
plot_group_trajectories_lines_3d(), 6,

8

read_openalex, 18
read_wos, 19, 20
read_wos_bib, 21
read_wos_plain, 21
read_wos_ris, 21
read_wos_tab, 21

sniff_citations_cycle_time, 21
sniff_components, 24, 27, 28, 30

sniff_entropy, 25
sniff_groups, 26, 27
sniff_groups(), 23
sniff_groups_attributes, 29
sniff_groups_cumulative, 30
sniff_groups_cumulative_citations, 32
sniff_groups_hubs, 33
sniff_groups_keywords, 34
sniff_groups_stm_prepare, 35
sniff_groups_stm_run, 36
sniff_groups_terms, 37
sniff_groups_trajectories, 39
sniff_key_route, 40
sniff_network, 26, 42

43

	birddog-package
	attach_docs_to_vertices
	detect_main_trajectories
	filter_trajectories
	get_openalex_fields
	plot_group_trajectories_2d
	plot_group_trajectories_3d
	plot_group_trajectories_lines_2d
	plot_group_trajectories_lines_3d
	read_openalex
	read_wos
	sniff_citations_cycle_time
	sniff_components
	sniff_entropy
	sniff_groups
	sniff_groups_attributes
	sniff_groups_cumulative
	sniff_groups_cumulative_citations
	sniff_groups_hubs
	sniff_groups_keywords
	sniff_groups_stm_prepare
	sniff_groups_stm_run
	sniff_groups_terms
	sniff_groups_trajectories
	sniff_key_route
	sniff_network
	Index

