lpmecThis tutorial demonstrates how to use the lpmec package
for measurement error correction in regression models using latent
variable estimation. The package implements bootstrapped analyses to
account for measurement error in observed indicators and provides
corrected regression coefficients.
First install the required dependencies and the lpmec
package:
Simulate data with a latent predictor and observed binary indicators:
set.seed(123)
n <- 1000 # Number of observations
d <- 10 # Number of observable indicators
# Generate latent variable and observed outcomes
x_true <- rnorm(n)
Yobs <- 0.4 * x_true + rnorm(n, sd = 0.35)
# Generate binary indicators of latent variable
ObservablesMat <- sapply(1:d, function(j) {
p <- pnorm(0.5 * x_true + rnorm(n, sd = 0.5))
rbinom(n, 1, p)
})Use lpmec to estimate corrected coefficients:
library(lpmec)
# Run bootstrapped analysis
results <- lpmec(
Y = Yobs,
observables = as.data.frame(ObservablesMat),
n_boot = 10, # Reduced for demonstration
n_partition = 5, # Reduced for demonstration
estimation_method = "em"
)## {booti_ 1 of 11} -- {parti_ 1 of 5}
## {booti_ 1 of 11} -- {parti_ 2 of 5}
## {booti_ 1 of 11} -- {parti_ 3 of 5}
## {booti_ 1 of 11} -- {parti_ 4 of 5}
## {booti_ 1 of 11} -- {parti_ 5 of 5}
## {booti_ 2 of 11} -- {parti_ 1 of 5}
## {booti_ 2 of 11} -- {parti_ 2 of 5}
## {booti_ 2 of 11} -- {parti_ 3 of 5}
## {booti_ 2 of 11} -- {parti_ 4 of 5}
## {booti_ 2 of 11} -- {parti_ 5 of 5}
## {booti_ 3 of 11} -- {parti_ 1 of 5}
## {booti_ 3 of 11} -- {parti_ 2 of 5}
## {booti_ 3 of 11} -- {parti_ 3 of 5}
## {booti_ 3 of 11} -- {parti_ 4 of 5}
## {booti_ 3 of 11} -- {parti_ 5 of 5}
## {booti_ 4 of 11} -- {parti_ 1 of 5}
## {booti_ 4 of 11} -- {parti_ 2 of 5}
## {booti_ 4 of 11} -- {parti_ 3 of 5}
## {booti_ 4 of 11} -- {parti_ 4 of 5}
## {booti_ 4 of 11} -- {parti_ 5 of 5}
## {booti_ 5 of 11} -- {parti_ 1 of 5}
## {booti_ 5 of 11} -- {parti_ 2 of 5}
## {booti_ 5 of 11} -- {parti_ 3 of 5}
## {booti_ 5 of 11} -- {parti_ 4 of 5}
## {booti_ 5 of 11} -- {parti_ 5 of 5}
## {booti_ 6 of 11} -- {parti_ 1 of 5}
## {booti_ 6 of 11} -- {parti_ 2 of 5}
## {booti_ 6 of 11} -- {parti_ 3 of 5}
## {booti_ 6 of 11} -- {parti_ 4 of 5}
## {booti_ 6 of 11} -- {parti_ 5 of 5}
## {booti_ 7 of 11} -- {parti_ 1 of 5}
## {booti_ 7 of 11} -- {parti_ 2 of 5}
## {booti_ 7 of 11} -- {parti_ 3 of 5}
## {booti_ 7 of 11} -- {parti_ 4 of 5}
## {booti_ 7 of 11} -- {parti_ 5 of 5}
## {booti_ 8 of 11} -- {parti_ 1 of 5}
## {booti_ 8 of 11} -- {parti_ 2 of 5}
## {booti_ 8 of 11} -- {parti_ 3 of 5}
## {booti_ 8 of 11} -- {parti_ 4 of 5}
## {booti_ 8 of 11} -- {parti_ 5 of 5}
## {booti_ 9 of 11} -- {parti_ 1 of 5}
## {booti_ 9 of 11} -- {parti_ 2 of 5}
## {booti_ 9 of 11} -- {parti_ 3 of 5}
## {booti_ 9 of 11} -- {parti_ 4 of 5}
## {booti_ 9 of 11} -- {parti_ 5 of 5}
## {booti_ 10 of 11} -- {parti_ 1 of 5}
## {booti_ 10 of 11} -- {parti_ 2 of 5}
## {booti_ 10 of 11} -- {parti_ 3 of 5}
## {booti_ 10 of 11} -- {parti_ 4 of 5}
## {booti_ 10 of 11} -- {parti_ 5 of 5}
## {booti_ 11 of 11} -- {parti_ 1 of 5}
## {booti_ 11 of 11} -- {parti_ 2 of 5}
## {booti_ 11 of 11} -- {parti_ 3 of 5}
## {booti_ 11 of 11} -- {parti_ 4 of 5}
## {booti_ 11 of 11} -- {parti_ 5 of 5}
Compare naive and corrected estimates:
## Latent Predictor Measurement Error Correction (LPMEC) Model Results
## -------------------------------------------------------------------
## Uncorrected Coefficient (OLS): 0.301 (SE: 0.022)
## Corrected Coefficient: 0.430 (SE: 0.021)
## Bayesian OLS (Outer): NA (SE: NA)
## Use summary() for detailed results.
## Latent Predictor Measurement Error Correction (LPMEC) Model Summary
## ====================================================================
## Estimate SE CI_Lower CI_Upper
## OLS 0.3007980 0.02247701 0.2622669 0.3264330
## IV 0.7489984 0.05586817 0.6639255 0.8199316
## Corrected IV 0.4300984 0.02124421 0.3943312 0.4606052
## Corrected OLS 0.4300984 0.02124421 0.3943312 0.4606052
## Bayesian OLS (Outer) NA NA NA NA
## Bayesian OLS (Inner) NA NA NA NA
You can visualize the relationship between split-half estimates:
The package supports multiple estimation approaches:
The lpmec package provides robust measurement error
correction through:
Refer to package documentation for advanced configuration options.