madshapR 2.0.0 (release : 2025-06-15)

Attention: Some changes to functions in the current version of madshapR may require updates of existing code.

Superseded object.

previous version (1.1.0 and older) version 2.0.0
madshapR_DEMO madshapR_examples

Superseded parameters.

previous version (1.1.0 and older) current version (2.0.0)
dataset_evaluate(as_data_dict_mlstr) dataset_evaluate(is_data_dict_mlstr)
data_dict_evaluate(as_data_dict_mlstr) data_dict_evaluate(is_data_dict_mlstr)
dossier_evaluate(as_data_dict_mlstr) dossier_evaluate(is_data_dict_mlstr)

Superseded function behaviors and/or output structures.

In dataset_evaluate(), data_dict_evaluate() and dossier_evaluate(), the columns generated in the outputs have been renamed as follows :

previous version (1.1.0 and older) current version (2.0.0)
index Index
name Variable name
label Variable label
valueType Data dictionary valueType
Categories::label Categories in data dictionary
Categories::missing Non-valid categories

In dataset_summarize() and dossier_summarize(), the columns generated in the outputs have been renamed as follows :

previous version (1.1.0 and older) current version (2.0.0)
index in data dict.name Index
name Variable name
label Variable label
Estimated dataset valueType Suggested valueType
Actual dataset valueType Dataset valueType
Total number of observations Number of rows
Nb. distinct values Number of distinct values
Nb. valid values Number of valid values
Nb. non-valid values Number of non-valid values
Nb. NA Number of empty values
% total Valid values % Valid values
% Non-valid values % Non-valid values
% NA % Empty values
———————————— ———————————

Bug fixes and improvements

https://github.com/maelstrom-research/madshapR/issues/123

https://github.com/maelstrom-research/madshapR/issues/112

https://github.com/maelstrom-research/madshapR/issues/75

https://github.com/maelstrom-research/madshapR/issues/87

https://github.com/maelstrom-research/madshapR/issues/82

https://github.com/maelstrom-research/madshapR/issues/81

https://github.com/maelstrom-research/madshapR/issues/76

https://github.com/maelstrom-research/madshapR/issues/116

https://github.com/maelstrom-research/madshapR/issues/115

https://github.com/maelstrom-research/madshapR/issues/109

https://github.com/maelstrom-research/madshapR/issues/86

https://github.com/maelstrom-research/madshapR/issues/83

The group_by parameter has been redesigned.

https://github.com/maelstrom-research/madshapR/issues/47

https://github.com/maelstrom-research/madshapR/issues/114

https://github.com/maelstrom-research/madshapR/issues/113

https://github.com/maelstrom-research/madshapR/issues/110

https://github.com/maelstrom-research/madshapR/issues/105

Enhancements in the assessment and summary reports!

https://github.com/maelstrom-research/madshapR/issues/126

https://github.com/maelstrom-research/madshapR/issues/104

https://github.com/maelstrom-research/madshapR/issues/98

https://github.com/maelstrom-research/madshapR/issues/97

https://github.com/maelstrom-research/madshapR/issues/96

https://github.com/maelstrom-research/madshapR/issues/95

https://github.com/maelstrom-research/madshapR/issues/94

https://github.com/maelstrom-research/madshapR/issues/93

https://github.com/maelstrom-research/madshapR/issues/92

https://github.com/maelstrom-research/madshapR/issues/91

https://github.com/maelstrom-research/madshapR/issues/90

https://github.com/maelstrom-research/madshapR/issues/89

https://github.com/maelstrom-research/madshapR/issues/88

https://github.com/maelstrom-research/madshapR/issues/85

https://github.com/maelstrom-research/madshapR/issues/80

https://github.com/maelstrom-research/madshapR/issues/79

Enhancements in the visual reports!

https://github.com/maelstrom-research/madshapR/issues/108

https://github.com/maelstrom-research/madshapR/issues/107

https://github.com/maelstrom-research/madshapR/issues/106

https://github.com/maelstrom-research/madshapR/issues/100

https://github.com/maelstrom-research/madshapR/issues/84

https://github.com/maelstrom-research/madshapR/issues/64

New functions

madshapR 1.1.0

Bug fixes and improvements

https://github.com/maelstrom-research/madshapR/issues/63

https://github.com/maelstrom-research/Rmonize/issues/53

https://github.com/maelstrom-research/Rmonize/issues/49

https://github.com/maelstrom-research/madshapR/issues/66

https://github.com/maelstrom-research/madshapR/issues/62

https://github.com/maelstrom-research/madshapR/issues/61

https://github.com/maelstrom-research/madshapR/issues/60

https://github.com/maelstrom-research/madshapR/issues/59

https://github.com/maelstrom-research/madshapR/issues/58

https://github.com/maelstrom-research/madshapR/issues/57

https://github.com/maelstrom-research/madshapR/issues/46

deprecated functions

To avoid confusion with help(function), the function madshapR_help() has been renamed madshapR_website().

Dependency changes

madshapR 1.0.3

Bug fixes and improvements

Some of the tests were made with another package (Rmonize) which as “madshapR” as a dependence.

Enhance reports

suppress overwrite parameter in dataset_visualize().

in dataset_summary() minor issue (consistency in column names and content).

Correct Data dictionary functions

enhance the function check_data_dict_valueType(), which was too slow.

valueType_adjust() now works with empty column (all NAs)

New functions

Deprecated functions

madshapR 1.0.2

Creation of NEWS feed !!

Addition of NEWS.md for the development version use “(development version)”.

Bug fixes and improvements

Dependency changes

New Imports: haven, lifecycle

No longer in Imports: xfun

New functions

These functions are imported from fabR

This separation into 3 functions will allow future developments, such as render as a ppt or pdf.

deprecated functions

Due to another package development (see fabR), The function open_visual_report() has been deprecated in favor of bookdown_open() imported from fabR package.

madshapR 1.0.0

This package is a collection of wrapper functions used in data pipelines.

This is still a work in progress, so please let us know if you used a function before and is not working any longer.

Helper functions

functions to generate, shape and format meta data.

These functions allows to create, extract transform and apply meta data to a dataset.

data_dict_collapse(),data_dict_expand(),data_dict_filter(), data_dict_group_by(),data_dict_group_split(),data_dict_list_nest(), data_dict_pivot_longer(),data_dict_pivot_wider(),data_dict_ungroup()

data_dict_match_dataset(),data_dict_apply(), data_dict_extract()

as_data_dict(), as_data_dict_mlstr(),as_data_dict_shape(), is_data_dict(), is_data_dict_mlstr(), is_data_dict_shape() as_taxonomy(), is_taxonomy()

functions to generate, shape and format data.

These functions allows to create, extract transform data/meta data from a dataset. A dossier is a list of datasets.

as_dataset(), as_dossier() is_dataset(), is_dossier()

Functions to work with data types

These functions allow user to work with, extract or assign data type (valueType) to values and/or dataset.

as_valueType(), is_valueType(), valueType_adjust(), valueType_guess(), valueType_self_adjust(), valueType_of()

Unit tests and QA for datasets and data dictionaries

These helper functions evaluate content of a dataset and/or data dictionary to extract from them irregularities or potential errors. These informations are stored in a tibble that can be use to assess inputs.

check_data_dict_categories(), check_data_dict_missing_categories(), check_data_dict_taxonomy(), check_data_dict_variables(), check_data_dict_valueType(), check_dataset_categories(), check_dataset_valueType(), check_dataset_variables(), check_name_standards()

Summarize information in dataset and data dictionaries

These helper functions evaluate content of a dataset and/or data dictionary to extract from them summary statistics and elements such as missing values, NA, category names, etc. These informations are stored in a tibble that can be use to summary inputs.

dataset_preprocess(), summary_variables(), summary_variables_categorical(),summary_variables_date(), summary_variables_numeric(),summary_variables_text()

Write and read excel and csv

Plot and summary functions used in a visual report

plot_bar(), plot_box(), plot_date(), plot_density(), plot_histogram(), plot_main_word(), plot_pie_valid_value(), summary_category(), summary_numerical(),summary_text()

aggregate information and generate reports

data_dict_evaluate() dataset_evaluate() dossier_evaluate()

dataset_summarize() dossier_summarize()

dataset_visualize() variable_visualize() open_visual_report()