This case study demonstrates a complete analysis pipeline using missoNet for genomic data analysis, specifically for regional DNA methylation QTL (meQTL) mapping. We’ll analyze how genetic variants (SNPs) influence DNA methylation levels across multiple CpG sites while accounting for missing data and network structure among CpG sites.
In epigenome-wide association studies (EWAS):
# Load required packages
library(missoNet)
library(ggplot2)
library(reshape2)
library(gridExtra)
# Set ggplot theme
theme_set(theme_minimal(base_size = 11))
# Set dimensions mimicking a genomic region
n <- 600 # Number of samples
p <- 80 # Number of SNPs in the region
q <- 20 # Number of CpG sites
# Create realistic correlation structure
# SNPs: Linkage disequilibrium (LD) blocks
create_ld_structure <- function(p, n_blocks = 4, within_block_cor = 0.7) {
Sigma <- matrix(0, p, p)
block_size <- p / n_blocks
for (b in 1:n_blocks) {
idx <- ((b-1)*block_size + 1):(b*block_size)
for (i in idx) {
for (j in idx) {
Sigma[i, j] <- within_block_cor^abs(i - j)
}
}
}
diag(Sigma) <- 1
return(Sigma)
}
Sigma.X <- create_ld_structure(p, n_blocks = 4)
# Variable missing rates (technical dropout patterns)
# Higher missingness for CpG sites with extreme GC content
gc_content <- runif(q, 0.3, 0.7) # Simulated GC content
rho_vec <- 0.01 + 0.3 * (abs(gc_content - 0.5) / 0.2)^2 # U-shaped missing pattern
# Generate the data
sim <- generateData(
n = n,
p = p,
q = q,
rho = rho_vec, # Missing rates
missing.type = "MAR", # Missing depends on technical factors
Sigma.X = Sigma.X,
Beta.row.sparsity = 0.15, # 15% of SNPs are meQTLs
Beta.elm.sparsity = 0.4, # Each meQTL affects 40% of CpGs
seed = 100
)
# Add meaningful variable names
colnames(sim$X) <- sprintf("rs%d", 1000000 + 1:p) # SNP IDs
colnames(sim$Y) <- sprintf("cg%d", 2000000 + 1:q) # CpG IDs
colnames(sim$Z) <- colnames(sim$Y)
rownames(sim$X) <- rownames(sim$Y) <- rownames(sim$Z) <- paste0("Sample", 1:n)
{
cat("\nDataset Summary:\n")
cat("================\n")
cat("Samples:", n, "\n")
cat("SNPs:", p, "\n")
cat("CpG sites:", q, "\n")
cat("Overall missing rate:", sprintf("%.1f%%", mean(is.na(sim$Z)) * 100), "\n")
cat("True meQTLs:", sum(rowSums(abs(sim$Beta)) > 0), "\n")
}
#>
#> Dataset Summary:
#> ================
#> Samples: 600
#> SNPs: 80
#> CpG sites: 20
#> Overall missing rate: 9.4%
#> True meQTLs: 12
# Analyze missing patterns
miss_by_cpg <- colMeans(is.na(sim$Z))
miss_by_sample <- rowMeans(is.na(sim$Z))
# Create visualization
par(mfrow = c(2, 2))
# 1. Missing rate by CpG
plot(miss_by_cpg, type = "h", lwd = 2, col = "steelblue",
xlab = "CpG Site", ylab = "Missing Rate",
main = "Missing Data by CpG Site")
abline(h = mean(miss_by_cpg), col = "red", lty = 2)
# 2. Missing rate by sample
hist(miss_by_sample, breaks = 20, col = "lightblue",
xlab = "Missing Rate", main = "Distribution of Missing Rates (Samples)")
abline(v = mean(miss_by_sample), col = "red", lwd = 2)
# 3. Heatmap of missingness
image(t(is.na(sim$Z[1:100, ])), col = c("white", "darkred"),
xlab = "CpG Site", ylab = "Sample (first 100)",
main = "Missing Data Pattern")
# 4. Correlation of missingness with GC content
plot(gc_content, miss_by_cpg, pch = 19, col = "darkblue",
xlab = "GC Content", ylab = "Missing Rate",
main = "Technical Dropout vs GC Content")
lines(lowess(gc_content, miss_by_cpg), col = "red", lwd = 2)
# Use complete data for visualization
Y_complete <- sim$Y
cor_cpg <- cor(Y_complete)
# Create enhanced heatmap
library(RColorBrewer)
colors <- colorRampPalette(brewer.pal(9, "RdBu"))(100)
heatmap(cor_cpg,
col = rev(colors),
symm = TRUE,
main = "CpG Methylation Correlation Structure",
xlab = "CpG Sites", ylab = "CpG Sites",
margins = c(8, 8))
fit_initial <- missoNet(
X = sim$X,
Y = sim$Z,
GoF = "BIC",
adaptive.search = TRUE, # Fast exploration
verbose = 1
)
#>
#> =============================================================
#> missoNet
#> =============================================================
#>
#> > Initializing model...
#>
#> --- Model Configuration -------------------------------------
#> Data dimensions: n = 600, p = 80, q = 20
#> Missing rate (avg): 9.4%
#> Selection criterion: BIC
#> Lambda grid: adaptive (fast pre-test)
#>
#> - Stage: 1/2 (Searching lambda.beta)
#> | | | 0% | |= | 2% | |== | 5% | |==== | 8% | |===== | 10% | |====== | 12% | |======== | 15% | |========= | 18% | |========== | 20% | |=========== | 22% | |============ | 25% | |============== | 28% | |=============== | 30% | |================ | 32% | |================== | 35% | |=================== | 38% | |==================== | 40% | |===================== | 42% | |====================== | 45% | |======================== | 48% | |========================= | 50% | |========================== | 52% | |============================ | 55% | |============================= | 58% | |============================== | 60% | |=============================== | 62% | |================================ | 65% | |================================== | 68% | |=================================== | 70% | |==================================== | 72% | |====================================== | 75% | |======================================= | 78% | |======================================== | 80% | |========================================= | 82% | |========================================== | 85% | |============================================ | 88% | |============================================= | 90% | |============================================== | 92% | |================================================ | 95% | |================================================= | 98% | |==================================================| 100%
#> - Stage: 2/2 (Searching lambda.theta)
#> | | | 0% | |= | 2% | |== | 4% | |=== | 6% | |==== | 8% | |===== | 10% | |====== | 12% | |======= | 14% | |======== | 16% | |========= | 18% | |========== | 20% | |=========== | 22% | |============ | 24% | |============= | 26% | |============== | 28% | |=============== | 30% | |================ | 32% | |================= | 34% | |================== | 36% | |=================== | 38% | |==================== | 40% | |===================== | 42% | |====================== | 44% | |======================= | 46% | |======================== | 48% | |========================= | 50% | |========================== | 52% | |=========================== | 54% | |============================ | 56% | |============================= | 58% | |============================== | 60% | |=============================== | 62% | |================================ | 64% | |================================= | 66% | |================================== | 68% | |=================================== | 70% | |==================================== | 72% | |===================================== | 74% | |====================================== | 76% | |======================================= | 78% | |======================================== | 80% | |========================================= | 82% | |========================================== | 84% | |=========================================== | 86% | |============================================ | 88% | |============================================= | 90% | |============================================== | 92% | |=============================================== | 94% | |================================================ | 96% | |================================================= | 98% | |==================================================| 100%
#>
#> Lambda grid size: 14 x 40 = 560 models
#> -------------------------------------------------------------
#>
#> --- Optimization Progress -----------------------------------
#> Stage 1: Initializing warm starts
#> Stage 2: Grid search (sequential)
#> -------------------------------------------------------------
#>
#> | | | 0% | | | 1% | |= | 1% | |= | 2% | |= | 3% | |== | 3% | |== | 4% | |== | 5% | |=== | 5% | |=== | 6% | |=== | 7% | |==== | 7% | |==== | 8% | |==== | 9% | |===== | 9% | |===== | 10% | |===== | 11% | |====== | 11% | |====== | 12% | |====== | 13% | |======= | 13% | |======= | 14% | |======= | 15% | |======== | 15% | |======== | 16% | |======== | 17% | |========= | 17% | |========= | 18% | |========= | 19% | |========== | 19% | |========== | 20% | |========== | 21% | |=========== | 21% | |=========== | 22% | |=========== | 23% | |============ | 23% | |============ | 24% | |============ | 25% | |============= | 25% | |============= | 26% | |============= | 27% | |============== | 27% | |============== | 28% | |============== | 29% | |=============== | 29% | |=============== | 30% | |=============== | 31% | |================ | 31% | |================ | 32% | |================ | 33% | |================= | 33% | |================= | 34% | |================= | 35% | |================== | 35% | |================== | 36% | |================== | 37% | |=================== | 37% | |=================== | 38% | |=================== | 39% | |==================== | 39% | |==================== | 40% | |==================== | 41% | |===================== | 41% | |===================== | 42% | |===================== | 43% | |====================== | 43% | |====================== | 44% | |====================== | 45% | |======================= | 45% | |======================= | 46% | |======================= | 47% | |======================== | 47% | |======================== | 48% | |======================== | 49% | |========================= | 49% | |========================= | 50% | |========================= | 51% | |========================== | 51% | |========================== | 52% | |========================== | 53% | |=========================== | 53% | |=========================== | 54% | |=========================== | 55% | |============================ | 55% | |============================ | 56% | |============================ | 57% | |============================= | 57% | |============================= | 58% | |============================= | 59% | |============================== | 59% | |============================== | 60% | |============================== | 61% | |=============================== | 61% | |=============================== | 62% | |=============================== | 63% | |================================ | 63% | |================================ | 64% | |================================ | 65% | |================================= | 65% | |================================= | 66% | |================================= | 67% | |================================== | 67% | |================================== | 68% | |================================== | 69% | |=================================== | 69% | |=================================== | 70% | |=================================== | 71% | |==================================== | 71% | |==================================== | 72% | |==================================== | 73% | |===================================== | 73% | |===================================== | 74% | |===================================== | 75% | |====================================== | 75% | |====================================== | 76% | |====================================== | 77% | |======================================= | 77% | |======================================= | 78% | |======================================= | 79% | |======================================== | 79% | |======================================== | 80% | |======================================== | 81% | |========================================= | 81% | |========================================= | 82% | |========================================= | 83% | |========================================== | 83% | |========================================== | 84% | |========================================== | 85% | |=========================================== | 85% | |=========================================== | 86% | |=========================================== | 87% | |============================================ | 87% | |============================================ | 88% | |============================================ | 89% | |============================================= | 89% | |============================================= | 90% | |============================================= | 91% | |============================================== | 91% | |============================================== | 92% | |============================================== | 93% | |=============================================== | 93% | |=============================================== | 94% | |=============================================== | 95% | |================================================ | 95% | |================================================ | 96% | |================================================ | 97% | |================================================= | 97% | |================================================= | 98% | |================================================= | 99% | |==================================================| 99% | |==================================================| 100%
#>
#> -------------------------------------------------------------
#>
#> > Refitting optimal model ...
#>
#>
#> --- Optimization Results ------------------------------------
#> Optimal lambda.beta: 4.3508e-01
#> Optimal lambda.theta: 2.0119e-02
#> BIC value: 16287.4096
#> Active predictors: 66 / 80 (82.5%)
#> Network edges: 46 / 190 (24.2%)
#> -------------------------------------------------------------
#>
#> =============================================================
# Examine initial selection
{
cat("\nStep 1: Initial parameter exploration\n")
cat("=====================================\n")
cat(" Lambda.beta:", fit_initial$est.min$lambda.beta, "\n")
cat(" Lambda.theta:", fit_initial$est.min$lambda.theta, "\n")
cat(" Active SNPs:", sum(rowSums(abs(fit_initial$est.min$Beta)) > 1e-8), "\n")
cat(" Network edges:",
sum(abs(fit_initial$est.min$Theta[upper.tri(fit_initial$est.min$Theta)]) > 1e-8), "\n")
}
#>
#> Step 1: Initial parameter exploration
#> =====================================
#> Lambda.beta: 0.4350844
#> Lambda.theta: 0.0201192
#> Active SNPs: 66
#> Network edges: 46
# Define refined grid based on initial exploration
lambda.beta.refined <- 10^(seq(
log10(min(max(fit_initial$lambda.beta.seq) * 0.9, fit_initial$est.min$lambda.beta * 50)),
log10(max(max(fit_initial$lambda.beta.seq) * 0.005, fit_initial$est.min$lambda.beta / 20)),
length.out = 25
))
lambda.theta.refined <- 10^(seq(
log10(min(max(fit_initial$lambda.theta.seq) * 0.9, fit_initial$est.min$lambda.theta * 50)),
log10(max(max(fit_initial$lambda.theta.seq) * 0.005, fit_initial$est.min$lambda.theta / 20)),
length.out = 25
))
# Perform 5-fold cross-validation
cvfit <- cv.missoNet(
X = sim$X,
Y = sim$Z,
kfold = 5,
lambda.beta = lambda.beta.refined,
lambda.theta = lambda.theta.refined,
compute.1se = TRUE,
verbose = 0,
seed = 1000
)
# Compare different model choices
models <- list(
"CV Minimum" = cvfit$est.min,
"1SE Beta" = cvfit$est.1se.beta,
"1SE Theta" = cvfit$est.1se.theta,
"Initial BIC" = fit_initial$est.min
)
if (!is.null(models$`1SE Beta`) & !is.null(models$`1SE Theta`)) { # Ensure models exist
comparison <- data.frame(
Model = names(models),
Lambda.Beta = sapply(models, function(x) x$lambda.beta),
Lambda.Theta = sapply(models, function(x) x$lambda.theta),
Active.SNPs = sapply(models, function(x)
sum(rowSums(abs(x$Beta)) > 1e-8)),
Total.Effects = sapply(models, function(x)
sum(abs(x$Beta) > 1e-8)),
Network.Edges = sapply(models, function(x)
sum(abs(x$Theta[upper.tri(x$Theta)]) > 1e-8))
)
print(comparison, digits = 4)
}
#> Model Lambda.Beta Lambda.Theta Active.SNPs Total.Effects Network.Edges
#> CV Minimum CV Minimum 0.2328 0.03066 79 458 28
#> 1SE Beta 1SE Beta 0.4023 0.03066 70 249 29
#> 1SE Theta 1SE Theta 0.2328 0.78728 79 434 0
#> Initial BIC Initial BIC 0.4351 0.02012 66 215 46
# Select the more regularized model, fallback if NULL
if (!is.null(models$`1SE Beta`)) {
final_model <- cvfit$est.1se.beta
} else final_model <- fit_initial$est.min
# Extract coefficients
Beta <- final_model$Beta
rownames(Beta) <- colnames(sim$X)
colnames(Beta) <- colnames(sim$Z)
# Identify significant associations
threshold <- 1e-3
sig_meqtls <- which(abs(Beta) > threshold, arr.ind = TRUE)
if (nrow(sig_meqtls) > 0) {
meqtl_df <- data.frame(
SNP = rownames(Beta)[sig_meqtls[,1]],
CpG = colnames(Beta)[sig_meqtls[,2]],
Effect = Beta[sig_meqtls],
AbsEffect = abs(Beta[sig_meqtls])
)
meqtl_df <- meqtl_df[order(meqtl_df$AbsEffect, decreasing = TRUE), ]
cat("Top 15 meQTL associations:\n")
print(head(meqtl_df, 15), digits = 3)
# Visualization
top_snps <- unique(meqtl_df$SNP[1:min(30, nrow(meqtl_df))])
Beta_subset <- Beta[top_snps, , drop = FALSE]
# Create heatmap
par(mfrow = c(1, 1))
colors <- colorRampPalette(c("blue", "white", "red"))(100)
heatmap(as.matrix(Beta_subset),
col = colors,
scale = "none",
main = "Top meQTL Effects",
xlab = "CpG Sites",
ylab = "SNPs",
margins = c(8, 8))
}
#> Top 15 meQTL associations:
#> SNP CpG Effect AbsEffect
#> 175 rs1000014 cg2000017 2.07 2.07
#> 83 rs1000046 cg2000009 -2.06 2.06
#> 220 rs1000009 cg2000020 1.98 1.98
#> 90 rs1000056 cg2000010 -1.75 1.75
#> 4 rs1000009 cg2000001 -1.72 1.72
#> 89 rs1000022 cg2000010 1.72 1.72
#> 185 rs1000046 cg2000017 -1.52 1.52
#> 40 rs1000063 cg2000003 1.50 1.50
#> 140 rs1000076 cg2000013 -1.50 1.50
#> 41 rs1000009 cg2000004 1.49 1.49
#> 36 rs1000040 cg2000003 -1.42 1.42
#> 168 rs1000056 cg2000015 1.38 1.38
#> 167 rs1000054 cg2000015 -1.31 1.31
#> 200 rs1000009 cg2000018 -1.28 1.28
#> 151 rs1000076 cg2000014 -1.21 1.21
# Extract precision matrix and convert to partial correlations
Theta <- final_model$Theta
rownames(Theta) <- colnames(Theta) <- colnames(sim$Z)
# Compute partial correlations
partial_cor <- -cov2cor(Theta)
diag(partial_cor) <- 0
# Network statistics
edge_threshold <- 0.1
n_edges <- sum(abs(partial_cor[upper.tri(partial_cor)]) > edge_threshold)
{
cat("\nNetwork Statistics:\n")
cat(" Total possible edges:", q * (q-1) / 2, "\n")
cat(" Selected edges (|r| >", edge_threshold, "):", n_edges, "\n")
cat(" Network density:", sprintf("%.1f%%", 100 * n_edges / (q * (q-1) / 2)), "\n")
}
#>
#> Network Statistics:
#> Total possible edges: 190
#> Selected edges (|r| > 0.1 ): 15
#> Network density: 7.9%
# Identify hub CpGs
degree <- colSums(abs(partial_cor) > edge_threshold)
hub_cpgs <- names(sort(degree, decreasing = TRUE)[1:5])
cat("\nHub CpG sites (highest connectivity):\n")
#>
#> Hub CpG sites (highest connectivity):
for (cpg in hub_cpgs) {
cat(" ", cpg, ": degree =", degree[cpg], "\n")
}
#> cg2000008 : degree = 3
#> cg2000011 : degree = 3
#> cg2000012 : degree = 3
#> cg2000013 : degree = 3
#> cg2000014 : degree = 3
# Visualize network
if (requireNamespace("igraph", quietly = TRUE)) {
library(igraph)
# Create network from significant edges
edges <- which(abs(partial_cor) > 0.15 & upper.tri(partial_cor), arr.ind = TRUE)
if (nrow(edges) > 0) {
edge_list <- data.frame(
from = rownames(partial_cor)[edges[,1]],
to = colnames(partial_cor)[edges[,2]],
weight = abs(partial_cor[edges])
)
g <- graph_from_data_frame(edge_list, directed = FALSE)
# Node properties
V(g)$size <- 5 + sqrt(degree[V(g)$name]) * 3
V(g)$color <- ifelse(V(g)$name %in% hub_cpgs, "red", "lightblue")
# Plot
par(mfrow = c(1, 1))
plot(g,
layout = layout_with_fr(g),
vertex.label.cex = 0.7,
edge.width = E(g)$weight * 3,
main = "CpG Conditional Dependency Network")
legend("topright", legend = c("Hub CpG", "Regular CpG"),
pch = 21, pt.bg = c("red", "lightblue"), pt.cex = 2)
}
}
# Analyze how meQTLs relate to network structure
active_snps <- which(rowSums(abs(Beta)) > threshold)
if (length(active_snps) > 0) {
cat("\nIntegration Analysis:\n")
cat("=====================\n")
# For each active SNP, check which CpGs it affects
for (i in active_snps[1:min(5, length(active_snps))]) {
affected_cpgs <- which(abs(Beta[i,]) > threshold)
if (length(affected_cpgs) > 1) {
# Check if affected CpGs are connected in the network
subnet_partial <- partial_cor[affected_cpgs, affected_cpgs]
mean_connection <- mean(abs(subnet_partial[upper.tri(subnet_partial)]))
cat("\n", rownames(Beta)[i], "affects", length(affected_cpgs), "CpGs\n")
cat("Mean network connection among affected CpGs:",
round(mean_connection, 3), "\n")
cat("Affected CpGs:", paste(colnames(Beta)[affected_cpgs], collapse = ", "), "\n")
}
}
}
#>
#> Integration Analysis:
#> =====================
#>
#> rs1000001 affects 9 CpGs
#> Mean network connection among affected CpGs: 0.029
#> Affected CpGs: cg2000001, cg2000003, cg2000007, cg2000010, cg2000011, cg2000012, cg2000013, cg2000014, cg2000017
#>
#> rs1000002 affects 5 CpGs
#> Mean network connection among affected CpGs: 0
#> Affected CpGs: cg2000001, cg2000003, cg2000007, cg2000012, cg2000018
#>
#> rs1000003 affects 3 CpGs
#> Mean network connection among affected CpGs: 0
#> Affected CpGs: cg2000003, cg2000017, cg2000020
#>
#> rs1000005 affects 2 CpGs
#> Mean network connection among affected CpGs: 0
#> Affected CpGs: cg2000013, cg2000020
# Split data for validation
n_train <- round(0.75 * n)
train_idx <- sample(n, n_train)
test_idx <- setdiff(1:n, train_idx)
# Refit on training data
cvfit_train <- cv.missoNet(
X = sim$X[train_idx, ],
Y = sim$Z[train_idx, ],
kfold = 5,
lambda.beta = lambda.beta.refined,
lambda.theta = lambda.theta.refined,
verbose = 0
)
# Predictions
Y_pred <- predict(cvfit_train, newx = sim$X[test_idx, ])
Y_test <- sim$Y[test_idx, ] # True complete values
# Calculate performance metrics
mse_per_cpg <- colMeans((Y_pred - Y_test)^2)
cor_per_cpg <- sapply(1:q, function(j) cor(Y_pred[,j], Y_test[,j]))
# Visualization
par(mfrow = c(1, 2))
# MSE vs missing rate
plot(miss_by_cpg, mse_per_cpg, pch = 19, col = "darkblue",
xlab = "Missing Rate", ylab = "Prediction MSE",
main = "Prediction Error vs Missing Rate")
lines(lowess(miss_by_cpg, mse_per_cpg), col = "red", lwd = 2)
# Correlation vs missing rate
plot(miss_by_cpg, cor_per_cpg, pch = 19, col = "darkgreen",
xlab = "Missing Rate", ylab = "Prediction Correlation",
main = "Prediction Accuracy vs Missing Rate")
lines(lowess(miss_by_cpg, cor_per_cpg), col = "red", lwd = 2)
{
cat("\nPrediction Performance:\n")
cat(" Mean MSE:", round(mean(mse_per_cpg), 4), "\n")
cat(" Mean correlation:", round(mean(cor_per_cpg), 3), "\n")
cat(" Worst CpG MSE:", round(max(mse_per_cpg), 4), "\n")
cat(" Best CpG correlation:", round(max(cor_per_cpg), 3), "\n")
}
#>
#> Prediction Performance:
#> Mean MSE: 0.9618
#> Mean correlation: 0.842
#> Worst CpG MSE: 1.4674
#> Best CpG correlation: 0.965
# Bootstrap stability (simplified for demonstration)
n_boot <- 10
selection_freq_beta <- matrix(0, p, q)
selection_freq_theta <- matrix(0, q, q)
for (b in 1:n_boot) {
# Bootstrap sample
boot_idx <- sample(n, replace = TRUE)
# Fit model
fit_boot <- missoNet(
X = sim$X[boot_idx, ],
Y = sim$Z[boot_idx, ],
lambda.beta = final_model$lambda.beta,
lambda.theta = final_model$lambda.theta,
verbose = 0
)
# Track selections
selection_freq_beta <- selection_freq_beta + (abs(fit_boot$est.min$Beta) > threshold)
selection_freq_theta <- selection_freq_theta +
(abs(fit_boot$est.min$Theta) > edge_threshold)
}
# Normalize
selection_freq_beta <- selection_freq_beta / n_boot
selection_freq_theta <- selection_freq_theta / n_boot
# Identify stable features
stable_meqtls <- which(selection_freq_beta > 0.8, arr.ind = TRUE)
stable_edges <- which(selection_freq_theta > 0.8 & upper.tri(selection_freq_theta),
arr.ind = TRUE)
{
cat("\nStability Results:\n")
cat(" Stable meQTLs (>80% selection):", nrow(stable_meqtls), "\n")
cat(" Stable network edges (>80% selection):", nrow(stable_edges), "\n")
}
#>
#> Stability Results:
#> Stable meQTLs (>80% selection): 94
#> Stable network edges (>80% selection): 18
if (nrow(stable_meqtls) > 0) {
cat("\nMost stable meQTL associations:\n")
stable_df <- data.frame(
SNP = colnames(sim$X)[stable_meqtls[,1]],
CpG = colnames(sim$Z)[stable_meqtls[,2]],
Frequency = selection_freq_beta[stable_meqtls]
)
print(head(stable_df[order(stable_df$Frequency, decreasing = TRUE), ], 10))
}
#>
#> Most stable meQTL associations:
#> SNP CpG Frequency
#> 1 rs1000001 cg2000001 1
#> 2 rs1000009 cg2000001 1
#> 3 rs1000039 cg2000001 1
#> 4 rs1000040 cg2000001 1
#> 5 rs1000046 cg2000001 1
#> 7 rs1000014 cg2000002 1
#> 8 rs1000048 cg2000002 1
#> 9 rs1000001 cg2000003 1
#> 10 rs1000009 cg2000003 1
#> 12 rs1000040 cg2000003 1
# Annotate SNPs with genes (simulated)
active_snp_ids <- which(rowSums(abs(Beta)) > threshold)
if (length(active_snp_ids) > 0) {
gene_names <- paste0("GENE", sample(1:50, length(active_snp_ids), replace = TRUE))
snp_annotation <- data.frame(
SNP = colnames(sim$X)[active_snp_ids],
Gene = gene_names,
Effect_Size = rowSums(abs(Beta[active_snp_ids, ]))
)
cat("Genes with meQTLs:\n")
gene_summary <- aggregate(Effect_Size ~ Gene, snp_annotation, sum)
gene_summary <- gene_summary[order(gene_summary$Effect_Size, decreasing = TRUE), ]
print(head(gene_summary, 10))
}
#> Genes with meQTLs:
#> Gene Effect_Size
#> 15 GENE27 12.4141659
#> 34 GENE50 10.9206360
#> 25 GENE41 7.9399606
#> 1 GENE1 6.7872450
#> 35 GENE6 6.1280365
#> 12 GENE24 5.4923039
#> 11 GENE21 4.9277246
#> 7 GENE16 3.6803628
#> 38 GENE9 3.2609485
#> 21 GENE33 0.2784541
# CpG annotation (simulated)
cpg_annotation <- data.frame(
CpG = colnames(sim$Z),
Region = sample(c("Promoter", "Gene Body", "Enhancer", "Intergenic"),
q, replace = TRUE, prob = c(0.4, 0.3, 0.2, 0.1)),
Island = sample(c("Island", "Shore", "Shelf", "Open Sea"),
q, replace = TRUE, prob = c(0.3, 0.2, 0.2, 0.3))
)
{
cat("\nCpG distribution by genomic region:\n")
print(table(cpg_annotation$Region))
}
#>
#> CpG distribution by genomic region:
#>
#> Enhancer Gene Body Intergenic Promoter
#> 3 6 2 9
{
cat("\nCpG distribution by island status:\n")
print(table(cpg_annotation$Island))
}
#>
#> CpG distribution by island status:
#>
#> Island Open Sea Shelf Shore
#> 9 6 3 2
#>
#> ========================================
#> ANALYSIS SUMMARY REPORT
#> ========================================
#>
#> DATA CHARACTERISTICS:
#> --------------------
#> • Samples analyzed: 600
#> • SNPs tested: 80
#> • CpG sites measured: 20
#> • Missing data rate: 9.4%
#> • Missing pattern: MAR (technical dropout)
#>
#> MODEL SELECTION:
#> ---------------
#> • Method: 5-fold cross-validation
#> • Selection criterion: 1-SE.Beta CV error
#> • Lambda (Beta): 0.4023
#> • Lambda (Theta): 0.0307
#>
#> KEY FINDINGS:
#> ------------
#> • meQTLs identified: 69 / 80 SNPs
#> • SNP-CpG associations: 239
#> • CpG network edges: 15 / 190 possible
#> • Hub CpGs identified: 5
#>
#> MODEL PERFORMANCE:
#> -----------------
#> • Mean prediction correlation: 0.842
#> • Mean prediction MSE: 0.9618
#> • Stability (bootstrap): 39% of associations stable
#>
#> BIOLOGICAL INSIGHTS (SIMULATED):
#> -------------------
#> • Primary affected regions: Promoters and gene bodies
#> • Network structure suggests co-regulated CpG modules
#> • Hub CpGs may represent key regulatory sites
This case study demonstrated a complete genomic data analysis workflow using missoNet:
The missoNet framework successfully: