The missoNet package implements a powerful framework for multitask learning with missing responses, simultaneously estimating:
Regression coefficients (\(\mathbf{B}\)): Relationships between predictors and multiple responses
Conditional network (\(\Theta\)): Dependencies among responses after accounting for predictors
The conditional Gaussian model is: \[ \mathbf{Y} = \mathbf{1}\mu^T + \mathbf{X}\mathbf{B} + \mathbf{E}, \quad \mathbf{E} \sim \mathrm{MVN}(0, \Theta^{-1}) \] where:
\(\mathbf{Y} \in \mathbb{R}^{n \times q}\): Response matrix (may contain missing values)
\(\mathbf{X} \in \mathbb{R}^{n \times p}\): Predictor matrix (complete)
\(\mathbf{B} \in \mathbb{R}^{p \times q}\): Coefficient matrix
\(\Theta \in \mathbb{R}^{q \times q}\): Precision matrix (inverse covariance)
\(\mu \in \mathbb{R}^q\): Intercept vector
For theoretical details, see Zeng et al. (2025).
The package includes a flexible data generator for testing:
# Generate synthetic data
sim <- generateData(
n = 200, # Sample size
p = 50, # Number of predictors
q = 10, # Number of responses
rho = 0.1, # Missing rate (10%)
missing.type = "MCAR" # Missing completely at random
)
# Examine the data structure
str(sim, max.level = 1)
#> List of 7
#> $ X : num [1:200, 1:50] -0.424 0.84 -2.546 1.825 1.217 ...
#> $ Y : num [1:200, 1:10] -0.0884 -0.3687 2.7607 -2.1025 3.2892 ...
#> $ Z : num [1:200, 1:10] -0.0884 -0.3687 2.7607 -2.1025 3.2892 ...
#> $ Beta : num [1:50, 1:10] 0 0 0 0 0 0 0 0 0 0 ...
#> $ Theta : num [1:10, 1:10] 1 0 0 0 0 0 0 0 0 0 ...
#> $ rho : num [1:10] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
#> $ missing.type: chr "MCAR"
#> - attr(*, "class")= chr "missoNet.sim"
# Check dimensions
cat("Predictors (X):", dim(sim$X), "\n")
#> Predictors (X): 200 50
cat("Complete responses (Y):", dim(sim$Y), "\n")
#> Complete responses (Y): 200 10
cat("Observed responses (Z):", dim(sim$Z), "\n")
#> Observed responses (Z): 200 10
cat("Missing rate:", sprintf("%.1f%%", mean(is.na(sim$Z)) * 100), "\n")
#> Missing rate: 10.0%
# Fit missoNet with automatic parameter selection
fit <- missoNet(
X = sim$X,
Y = sim$Z, # Use observed responses with missing values
GoF = "BIC" # Goodness-of-fit criterion
)
#>
#> =============================================================
#> missoNet
#> =============================================================
#>
#> > Initializing model...
#>
#> --- Model Configuration -------------------------------------
#> Data dimensions: n = 200, p = 50, q = 10
#> Missing rate (avg): 10.0%
#> Selection criterion: BIC
#> Lambda grid: standard (dense)
#> Lambda grid size: 50 x 50 = 2500 models
#> -------------------------------------------------------------
#>
#> --- Optimization Progress -----------------------------------
#> Stage 1: Initializing warm starts
#> Stage 2: Grid search (sequential)
#> -------------------------------------------------------------
#>
#> | | | 0% | | | 1% | |= | 1% | |= | 2% | |= | 3% | |== | 3% | |== | 4% | |== | 5% | |=== | 5% | |=== | 6% | |=== | 7% | |==== | 7% | |==== | 8% | |==== | 9% | |===== | 9% | |===== | 10% | |===== | 11% | |====== | 11% | |====== | 12% | |====== | 13% | |======= | 13% | |======= | 14% | |======= | 15% | |======== | 15% | |======== | 16% | |======== | 17% | |========= | 17% | |========= | 18% | |========= | 19% | |========== | 19% | |========== | 20% | |========== | 21% | |=========== | 21% | |=========== | 22% | |=========== | 23% | |============ | 23% | |============ | 24% | |============ | 25% | |============= | 25% | |============= | 26% | |============= | 27% | |============== | 27% | |============== | 28% | |============== | 29% | |=============== | 29% | |=============== | 30% | |=============== | 31% | |================ | 31% | |================ | 32% | |================ | 33% | |================= | 33% | |================= | 34% | |================= | 35% | |================== | 35% | |================== | 36% | |================== | 37% | |=================== | 37% | |=================== | 38% | |=================== | 39% | |==================== | 39% | |==================== | 40% | |==================== | 41% | |===================== | 41% | |===================== | 42% | |===================== | 43% | |====================== | 43% | |====================== | 44% | |====================== | 45% | |======================= | 45% | |======================= | 46% | |======================= | 47% | |======================== | 47% | |======================== | 48% | |======================== | 49% | |========================= | 49% | |========================= | 50% | |========================= | 51% | |========================== | 51% | |========================== | 52% | |========================== | 53% | |=========================== | 53% | |=========================== | 54% | |=========================== | 55% | |============================ | 55% | |============================ | 56% | |============================ | 57% | |============================= | 57% | |============================= | 58% | |============================= | 59% | |============================== | 59% | |============================== | 60% | |============================== | 61% | |=============================== | 61% | |=============================== | 62% | |=============================== | 63% | |================================ | 63% | |================================ | 64% | |================================ | 65% | |================================= | 65% | |================================= | 66% | |================================= | 67% | |================================== | 67% | |================================== | 68% | |================================== | 69% | |=================================== | 69% | |=================================== | 70% | |=================================== | 71% | |==================================== | 71% | |==================================== | 72% | |==================================== | 73% | |===================================== | 73% | |===================================== | 74% | |===================================== | 75% | |====================================== | 75% | |====================================== | 76% | |====================================== | 77% | |======================================= | 77% | |======================================= | 78% | |======================================= | 79% | |======================================== | 79% | |======================================== | 80% | |======================================== | 81% | |========================================= | 81% | |========================================= | 82% | |========================================= | 83% | |========================================== | 83% | |========================================== | 84% | |========================================== | 85% | |=========================================== | 85% | |=========================================== | 86% | |=========================================== | 87% | |============================================ | 87% | |============================================ | 88% | |============================================ | 89% | |============================================= | 89% | |============================================= | 90% | |============================================= | 91% | |============================================== | 91% | |============================================== | 92% | |============================================== | 93% | |=============================================== | 93% | |=============================================== | 94% | |=============================================== | 95% | |================================================ | 95% | |================================================ | 96% | |================================================ | 97% | |================================================= | 97% | |================================================= | 98% | |================================================= | 99% | |==================================================| 99% | |==================================================| 100%
#>
#> -------------------------------------------------------------
#>
#> > Refitting optimal model ...
#>
#>
#> --- Optimization Results ------------------------------------
#> Optimal lambda.beta: 5.8376e-01
#> Optimal lambda.theta: 1.2260e-01
#> BIC value: 4305.2563
#> Active predictors: 31 / 50 (62.0%)
#> Network edges: 3 / 45 (6.7%)
#> -------------------------------------------------------------
#>
#> =============================================================
# Extract optimal estimates
Beta.hat <- fit$est.min$Beta
Theta.hat <- fit$est.min$Theta
mu.hat <- fit$est.min$mu
# Model summary
cat("Selected lambda.beta:", fit$est.min$lambda.beta, "\n")
#> Selected lambda.beta: 0.5837619
cat("Selected lambda.theta:", fit$est.min$lambda.theta, "\n")
#> Selected lambda.theta: 0.1225953
cat("Active predictors:", sum(rowSums(abs(Beta.hat)) > 1e-8), "/", nrow(Beta.hat), "\n")
#> Active predictors: 31 / 50
cat("Network edges:", sum(abs(Theta.hat[upper.tri(Theta.hat)]) > 1e-8),
"/", ncol(Theta.hat) * (ncol(Theta.hat)-1) / 2, "\n")
#> Network edges: 3 / 45
# Split data for demonstration
train_idx <- 1:150
test_idx <- 151:200
# Refit on training data
fit_train <- missoNet(
X = sim$X[train_idx, ],
Y = sim$Z[train_idx, ],
GoF = "BIC",
verbose = 0 # Suppress output
)
# Predict on test data
Y_pred <- predict(fit_train, newx = sim$X[test_idx, ])
# Evaluate predictions (using complete data for comparison)
mse <- mean((Y_pred - sim$Y[test_idx, ])^2)
cat("Test set MSE:", round(mse, 4), "\n")
#> Test set MSE: 1.2326
missoNet handles three types of missing data:
# Generate data with different missing mechanisms
n <- 300; p <- 30; q <- 8; rho <- 0.15
sim_mcar <- generateData(n, p, q, rho, missing.type = "MCAR")
sim_mar <- generateData(n, p, q, rho, missing.type = "MAR")
sim_mnar <- generateData(n, p, q, rho, missing.type = "MNAR")
# Visualize missing patterns
par(mfrow = c(1, 3), mar = c(4, 4, 3, 1))
# MCAR pattern
image(1:q, 1:n, t(is.na(sim_mcar$Z)),
col = c("white", "darkred"),
xlab = "Response", ylab = "Observation",
main = "MCAR: Random Pattern")
# MAR pattern
image(1:q, 1:n, t(is.na(sim_mar$Z)),
col = c("white", "darkred"),
xlab = "Response", ylab = "Observation",
main = "MAR: Depends on X")
# MNAR pattern
image(1:q, 1:n, t(is.na(sim_mnar$Z)),
col = c("white", "darkred"),
xlab = "Response", ylab = "Observation",
main = "MNAR: Depends on Y")
# Fit with different criteria
criteria <- c("AIC", "BIC", "eBIC")
results <- list()
for (crit in criteria) {
results[[crit]] <- missoNet(
X = sim$X,
Y = sim$Z,
GoF = crit,
verbose = 0
)
}
# Compare selected models
comparison <- data.frame(
Criterion = criteria,
Lambda.Beta = sapply(results, function(x) x$est.min$lambda.beta),
Lambda.Theta = sapply(results, function(x) x$est.min$lambda.theta),
Active.Predictors = sapply(results, function(x)
sum(rowSums(abs(x$est.min$Beta)) > 1e-8)),
Network.Edges = sapply(results, function(x)
sum(abs(x$est.min$Theta[upper.tri(x$est.min$Theta)]) > 1e-8)),
GoF.Value = sapply(results, function(x) x$est.min$gof)
)
print(comparison, digits = 4)
#> Criterion Lambda.Beta Lambda.Theta Active.Predictors Network.Edges GoF.Value
#> AIC AIC 0.3770 0.007715 42 34 4021
#> BIC BIC 0.5838 0.122595 31 3 4305
#> eBIC eBIC 0.5838 0.122595 31 3 4483
# Define custom regularization paths
lambda.beta <- 10^seq(0, -2, length.out = 15)
lambda.theta <- 10^seq(0, -2, length.out = 15)
# Fit with custom grid
fit_custom <- missoNet(
X = sim$X,
Y = sim$Z,
lambda.beta = lambda.beta,
lambda.theta = lambda.theta,
verbose = 0
)
# Grid coverage summary
cat(" Beta range: [",
sprintf("%.4f", min(fit_custom$param_set$gof.grid.beta)), ", ",
sprintf("%.4f", max(fit_custom$param_set$gof.grid.beta)), "]\n", sep = "")
#> Beta range: [0.0100, 1.0000]
cat(" Theta range: [",
sprintf("%.4f", min(fit_custom$param_set$gof.grid.theta)), ", ",
sprintf("%.4f", max(fit_custom$param_set$gof.grid.theta)), "]\n", sep = "")
#> Theta range: [0.0100, 1.0000]
cat(" Total models evaluated:", length(fit_custom$param_set$gof), "\n")
#> Total models evaluated: 225
# Create data with variable missing rates across responses
n <- 300; p <- 30; q <- 8; rho <- 0.15
rho_vec <- seq(0.05, 0.30, length.out = q)
sim_var <- generateData(
n = 300,
p = 30,
q = 8,
rho = rho_vec, # Different missing rate for each response
missing.type = "MAR"
)
# Examine missing patterns
miss_summary <- data.frame(
Response = paste0("Y", 1:q),
Target = rho_vec,
Actual = colMeans(is.na(sim_var$Z))
)
print(miss_summary, digits = 3)
#> Response Target Actual
#> 1 Y1 0.0500 0.0367
#> 2 Y2 0.0857 0.0500
#> 3 Y3 0.1214 0.1167
#> 4 Y4 0.1571 0.1633
#> 5 Y5 0.1929 0.2000
#> 6 Y6 0.2286 0.2267
#> 7 Y7 0.2643 0.2367
#> 8 Y8 0.3000 0.3033
# Fit model accounting for variable missingness
fit_var <- missoNet(
X = sim_var$X,
Y = sim_var$Z,
adaptive.search = TRUE, # Fast adaptive search
verbose = 0
)
# Visualize
plot(fit_var)
# Use penalty factors to incorporate prior information
p <- ncol(sim$X)
q <- ncol(sim$Z)
# Example: We know predictors 1-10 are important
beta.pen.factor <- matrix(1, p, q)
beta.pen.factor[1:10, ] <- 0.1 # Lighter penalty for known important predictors
# Example: We expect certain response pairs to be connected
theta.pen.factor <- matrix(1, q, q)
theta.pen.factor[1, 2] <- theta.pen.factor[2, 1] <- 0.1
theta.pen.factor[3, 4] <- theta.pen.factor[4, 3] <- 0.1
# Fit with prior information
fit_prior <- missoNet(
X = sim$X,
Y = sim$Z,
beta.pen.factor = beta.pen.factor,
theta.pen.factor = theta.pen.factor
)
# Standardization is recommended (default: TRUE)
# for numerical stability and comparable penalties
fit_std <- missoNet(X = sim$X, Y = sim$Z,
standardize = TRUE,
standardize.response = TRUE)
# Without standardization (for pre-scaled data)
fit_no_std <- missoNet(X = scale(sim$X), Y = scale(sim$Z),
standardize = FALSE,
standardize.response = FALSE)
# Adjust convergence settings based on problem difficulty and time constraints
fit_tight <- missoNet(
X = sim$X,
Y = sim$Z,
beta.tol = 1e-6, # Tighter tolerance
theta.tol = 1e-6,
beta.max.iter = 10000, # More iterations allowed
theta.max.iter = 10000
)
# For quick exploration, use looser settings
fit_quick <- missoNet(
X = sim$X,
Y = sim$Z,
beta.tol = 1e-3, # Looser tolerance
theta.tol = 1e-3,
beta.max.iter = 1000, # Fewer iterations
theta.max.iter = 1000,
adaptive.search = TRUE # Fast adaptive search
)