Type: Package
Title: Numerical Association Rule Mining using Population-Based Nature-Inspired Algorithms
Version: 0.3.0
Classification/ACM: G.4, H.2.8
Description: Framework is devoted to mining numerical association rules through the utilization of nature-inspired algorithms for optimization. Drawing inspiration from the 'NiaARM' 'Python' and the 'NiaARM' 'Julia' packages, this repository introduces the capability to perform numerical association rule mining in the R programming language. Fister Jr., Iglesias, Galvez, Del Ser, Osaba and Fister (2018) <doi:10.1007/978-3-030-03493-1_9>.
URL: https://github.com/firefly-cpp/niarules
BugReports: https://github.com/firefly-cpp/niarules/issues
Depends: R (≥ 4.0.0)
License: MIT + file LICENSE
Encoding: UTF-8
RoxygenNote: 7.3.2
Imports: stats, utils, Rcpp, dplyr, rlang, rgl
Suggests: testthat, withr
LinkingTo: Rcpp
NeedsCompilation: yes
Packaged: 2025-09-08 11:07:12 UTC; iztok
Author: Iztok Jr. Fister ORCID iD [aut, cre, cph], Gerlinde Emsenhuber ORCID iD [aut], Jan Hendrik Plümer ORCID iD [aut]
Maintainer: Iztok Jr. Fister <iztok@iztok.space>
Repository: CRAN
Date/Publication: 2025-09-08 12:40:07 UTC

Add an attribute to the "rule" list.

Description

This function adds an attribute to the existing list.

Usage

add_attribute(rules, name, type, border1, border2, value)

Arguments

rules

The current rules list.

name

The name of the feature in the rule.

type

The type of the feature in the rule.

border1

The first border value in the rule.

border2

The second border value in the rule.

value

The value associated with the rule.

Value

The updated rules list.

Examples

rules <- list()
new_rules <- add_attribute(rules, "feature1", "numerical", 0.2, 0.8, "EMPTY")


Build coral plot layout (nodes + edges) from a parsed rules object

Description

Produces the node and edge layout consumed by 'render_coral_rgl()'. Given a parsed association-rules object (from 'parse_rules()'), this function groups rules by RHS itemset (one coral per unique RHS), arranges those corals on a square grid, and emits geometry and metadata for drawing.

**Input expectations ('parsed')** - 'parsed$items': 'data.frame' with at least 'item_id' (integer, **0-based**), 'label' (character). - 'parsed$rules': 'data.frame' with at least 'support', 'confidence', 'lift' (numeric) and 'lhs_item_ids', 'rhs_item_ids' (list-columns of **0-based** integer vectors).

Usage

build_coral_plots(parsed, lhs_sort_metric = c("confidence", "support", "lift"))

Arguments

parsed

A list as returned by 'parse_rules()', containing components 'items' and 'rules' with the schema above.

lhs_sort_metric

character; how to order items **within each LHS path** when building the layout. One of '"confidence"', '"support"', '"lift"'. Typically interpreted as **descending** by the chosen metric.

Details

**Grid sizing.** The number of corals ('n_plots') is computed as the number of distinct, non-empty RHS itemsets across rules. An RHS itemset’s display label is recomposed by joining the 'items$label' values for its 'rhs_item_ids' (comma-separated). The grid is arranged as a near-square: 'grid_size = ceiling(sqrt(n_plots))', with a minimum of 1.

The heavy lifting (node positions, radii, edge routing) is delegated to the C++ backend 'build_layout_cpp()', which receives the 'parsed' object, the computed 'grid_size', and the chosen 'lhs_sort_metric'.

**Output schema (for 'render_coral_rgl()').** - 'nodes' includes (at least): 'x', 'z', 'x_offset', 'z_offset', 'radius', 'path' (character key), and optionally 'item', 'feature', 'step', 'interval_label', 'interval_label_short'. - 'edges' includes (at least): 'x', 'y', 'z', 'x_end', 'y_end', 'z_end', 'parent_path', 'child_path', and the rule metrics 'support', 'confidence', 'lift'. (Initial 'y'/'y_end' are typically on the base plane; vertical styling can be added later by 'render_coral_rgl()' via 'y_scale'/jitter.)

**Indexing note.** Item identifiers remain **0-based** as produced by 'parse_rules()' for cross-language stability.

Value

A list with components: - 'nodes': 'data.frame' of node geometry and labels, - 'edges': 'data.frame' of edge geometry and attached metrics, - 'grid_size': integer grid side length used to arrange corals.


Entry point for R to generate coral plot data from a set of association rules.

Description

This function takes a list of parsed association rules and produces two data frames: one for the nodes and one for the edges of a coral plot. It acts as a wrapper that:

Usage

build_layout_cpp(parsed, grid_size, lhs_sort = "confidence")

Arguments

parsed

A list as returned by 'parse_rules()', with components:

  • items: data.frame with at least item_id (integer, 0-based) and label (character).

  • rules: data.frame with at least rule_id (integer), support, confidence, lift (numeric), and list-columns lhs_item_ids, rhs_item_ids containing 0-based integer vectors.

grid_size

Integer; number of grid cells per layout side used to place corals on a near-square grid (e.g., 3 means a 3×3 canvas)

lhs_sort

Character; metric used to sort antecedent items within each LHS path when building the layout. One of "confidence", "support", "lift" (default "confidence"). Sorting is applied in descending order of the chosen metric.

Value

A List containing two DataFrames:


Build rules based on a candidate solution.

Description

This function takes a candidate solution vector and a features list and builds rule.

Usage

build_rule(solution, features)

Arguments

solution

The solution vector.

features

The features list.

Value

A rule.


Calculate the border value based on feature information and a given value.

Description

This function calculates the border value for a feature based on the feature information and a given value.

Usage

calculate_border(feature_info, value)

Arguments

feature_info

Information about the feature.

value

The value to calculate the border for.

Value

The calculated border value.

Examples

feature_info <- list(type = "numerical", lower_bound = 0, upper_bound = 1)
border_value <- calculate_border(feature_info, 0.5)


Calculate the fitness of an association rule.

Description

This function calculates the fitness of an association rule using support and confidence.

Usage

calculate_fitness(supp, conf)

Arguments

supp

The support of the association rule.

conf

The confidence of the association rule.

Value

The fitness of the association rule.


Calculate the selected category based on a value and the number of categories.

Description

This function calculates the selected category based on a given value and the total number of categories.

Usage

calculate_selected_category(value, num_categories)

Arguments

value

The value to calculate the category for.

num_categories

The total number of categories.

Value

The calculated selected category.

Examples

selected_category <- calculate_selected_category(0.3, 5)


Check if the attribute conditions are satisfied for an instance.

Description

This function checks if the attribute conditions specified in the association rule are satisfied for a given instance row.

Usage

check_attribute(attribute, instance_row)

Arguments

attribute

An attribute with type and name information.

instance_row

A row representing an instance in the dataset.

Value

TRUE if conditions are satisfied, FALSE otherwise.


Calculate the cut point for an association rule.

Description

This function calculates the cut point, denoting which part of the vector belongs to the antecedent and which to the consequent of the mined association rule.

Usage

cut_point(sol, num_attr)

Arguments

sol

The cut value from the solution vector.

num_attr

The number of attributes in the association rule.

Value

The cut point value.


Implementation of Differential Evolution metaheuristic algorithm.

Description

This function uses Differential Evolution, a stochastic population-based optimization algorithm, to find the optimal numerical association rule.

Usage

differential_evolution(
  d = 10,
  np = 10,
  f = 0.5,
  cr = 0.9,
  nfes = 1000,
  features,
  data,
  is_time_series = FALSE
)

Arguments

d

Dimension of the problem (default: 10).

np

Population size (default: 10).

f

The differential weight, controlling the amplification of the difference vector (default: 0.5).

cr

The crossover probability, determining the probability of a component being replaced (default: 0.9).

nfes

The maximum number of function evaluations (default: 1000).

features

A list containing information about features, including type and bounds.

data

A data frame representing instances in the dataset.

is_time_series

A boolean indicating whether the dataset is time series.

Value

A list containing the best solution, its fitness value, and the number of function evaluations and list of identified association rules.

References

Storn, R., & Price, K. (1997). "Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces." Journal of Global Optimization, 11(4), 341–359. doi:10.1023/A:1008202821328


Evaluate a candidate solution, with optional time series filtering.

Description

This function evaluates the fitness of an association rule using support and confidence. If time series data is used, it restricts evaluation to the specified time range.

Usage

evaluate(solution, features, instances, is_time_series = FALSE)

Arguments

solution

A vector representing a candidate solution.

features

A list containing information about features.

instances

A data frame representing dataset instances.

is_time_series

A boolean flag indicating if time series filtering is required.

Value

A list containing fitness and identified rules.

References

Fister, I., Iglesias, A., Galvez, A., Del Ser, J., Osaba, E., & Fister, I. (2018). "Differential evolution for association rule mining using categorical and numerical attributes." In Intelligent Data Engineering and Automated Learning–IDEAL 2018: 19th International Conference, Madrid, Spain, November 21–23, 2018, Proceedings, Part I (pp. 79-88). Springer International Publishing. doi:10.1007/978-3-030-03496-2_9

Fister Jr, I., Podgorelec, V., & Fister, I. (2021). "Improved nature-inspired algorithms for numeric association rule mining." In Intelligent Computing and Optimization: Proceedings of the 3rd International Conference on Intelligent Computing and Optimization 2020 (ICO 2020) (pp. 187-195). Springer International Publishing. doi:10.1007/978-3-030-68154-8_19


Extract feature information from a dataset, excluding timestamps.

Description

This function analyzes the given dataset and extracts information about each feature.

Usage

extract_feature_info(data, timestamp_col = "timestamp")

Arguments

data

The dataset to analyze.

timestamp_col

Optional. The name of the timestamp column to exclude from features.

Value

A list containing information about each feature, including type and bounds/categories.


Get the position of a feature.

Description

This function returns the position of a feature in the vector, considering the type of the feature.

Usage

feature_position(features, feature)

Arguments

features

The features list.

feature

The name of the feature to find.

Value

The position of the feature.

Examples

features <- list(
  feature1 = list(type = "numerical"),
  feature2 = list(type = "categorical"),
  feature3 = list(type = "numerical")
)
position <- feature_position(features, "feature2")


Fix Borders of a Numeric Vector

Description

This function ensures that all values greater than 1.0 are set to 1.0, and all values less than 0.0 are set to 0.0.

Usage

fix_borders(vector)

Arguments

vector

A numeric vector to be processed.

Value

A numeric vector with borders fixed.


Format Rule Parts

Description

This function formats the parts of an association rule into a string.

Usage

format_rule_parts(parts)

Arguments

parts

A list containing parts of an association rule.

Value

A formatted string representing the rule parts.


Map solution boundaries to time series instances.

Description

This function maps the lower and upper bounds of the solution vector to a subset of the dataset.

Usage

map_to_ts(lower, upper, instances)

Arguments

lower

The lower bound in [0, 1].

upper

The upper bound in [0, 1].

instances

The full dataset.

Value

A list with 'low', 'up', and 'filtered_instances'.


Parse association rules into a reusable, layout-agnostic structure

Description

Converts association rules into a normalized representation for downstream layout/rendering. Accepts either: - a 'data.frame' with **required** columns 'Antecedent', 'Consequence', 'Support', 'Confidence', 'Fitness', or - a native 'niarules' rules object (which is exported to CSV internally via 'niarules::write_association_rules_to_csv()' and then parsed).

The output separates **items** from **rules** and uses stable **0-based** item identifiers suitable for cross-language use.

Usage

parse_rules(arules = NULL)

Arguments

arules

A 'data.frame' with columns 'Antecedent', 'Consequence', 'Support', 'Confidence', 'Fitness', **or** a 'niarules' rules object.

Details

**Input requirements** - 'Antecedent', 'Consequence': character encodings of itemsets per rule. - 'Support', 'Confidence', 'Fitness': numeric metrics; 'Fitness' is interpreted as the **lift-like** metric and is exposed as 'lift' in the returned 'rules'.

When 'arules' is not a 'data.frame', the function requires the **niarules** package at runtime to serialize the rules to CSV. Missing required columns trigger an error.

**Output schema** - 'items' ('data.frame'): 'item_id' (integer, **0-based**), 'label', 'feature', 'kind', 'category_value', 'lo', 'hi', 'incl_low', 'incl_high', 'op', 'label_long', 'label_short'. - 'rules' ('data.frame'): 'rule_id', 'support', 'confidence', 'lift', 'lhs_item_ids' (list of integer vectors; **0-based ids**), 'rhs_item_ids' (list of integer vectors; **0-based ids**), 'antecedent_length', 'consequent_length'.

**Indexing note** 'item_id' values are **0-based** for stability across languages. In R, convert to 1-based with 'items$item_id + 1L' if needed.

Value

A list with components: - 'items': 'data.frame' describing unique items, - 'rules': 'data.frame' describing association rules.


Low-level C++ parser for association rules

Description

'parse_rules_cpp()' is the Rcpp-exposed engine behind parse_rules. It accepts a data frame of association rules and returns a layout-agnostic parsed structure consisting of an items table and a rules table. This function is exported by Rcpp primarily for internal use and testing.

Usage

parse_rules_cpp(rules_df)

Arguments

rules_df

A data frame with the required columns:

  • Antecedent (character)

  • Consequence (character)

  • Support (numeric)

  • Confidence (numeric)

  • Fitness (numeric; treated as lift by convention)

Details

Parsing rules

Value

A list with two data frames:

items

Columns:

  • item_id: integer, 0-based stable ID within this parsed object.

  • label: original item string.

  • feature: base feature name.

  • kind: one of "numeric", "categorical", "set", "unknown".

  • category_value: categorical value (quotes removed).

  • lo, hi: numeric bounds (may be NA).

  • incl_low, incl_high: logical inclusivity flags.

  • op: one of "<", "<=", ">", ">=", "=", "in".

  • label_long, label_short: preformatted interval labels.

rules

Columns:

  • rule_id: 1-based rule index (for display).

  • support, confidence, lift: rule-level metrics.

  • lhs_item_ids, rhs_item_ids: list-columns of integer vectors of 0-based item_ids.

  • antecedent_length, consequent_length: integer lengths of LHS/RHS.

Errors

Throws an error if required columns are missing or have inconsistent lengths.


Implementation of Particle Swarm Optimization (PSO) metaheuristic algorithm.

Description

This function uses PSO, a stochastic population-based optimization algorithm, to find the optimal numerical association rule.

Usage

particle_swarm_optimization(
  d = 10,
  np = 10,
  w = 0.7,
  c1 = 1.5,
  c2 = 1.5,
  nfes = 1000,
  features,
  data,
  is_time_series = FALSE
)

Arguments

d

Dimension of the problem (default: 10).

np

Population size (default: 10).

w

Inertia weight (default: 0.7).

c1

Cognitive coefficient (default: 1.5).

c2

Social coefficient (default: 1.5).

nfes

The maximum number of function evaluations (default: 1000).

features

A list containing information about features, including type and bounds.

data

A data frame representing instances in the dataset.

is_time_series

A boolean indicating whether the dataset is time series.

Value

A list containing the best solution, its fitness value, and the number of function evaluations and list of identified association rules.

References

Kennedy, J., & Eberhart, R. (1995). "Particle swarm optimization." Proceedings of ICNN'95 - International Conference on Neural Networks, 4, 1942–1948. IEEE. doi:10.1109/ICNN.1995.488968


Description

This function prints association rules including antecedent, consequence, support, confidence, and fitness. For time series datasets, it also includes the start and end timestamps instead of indices.

Usage

print_association_rules(rules, is_time_series = FALSE, timestamps = NULL)

Arguments

rules

A list containing association rules.

is_time_series

A boolean flag indicating if time series information should be included.

timestamps

A vector of timestamps corresponding to the time series data.

Value

Prints the association rules.


Description

This function prints the information extracted about each feature.

Usage

print_feature_info(feature_info)

Arguments

feature_info

The list containing information about each feature.

Value

A message is printed to the console for each feature, providing information about the feature's type, and additional details such as lower and upper bounds for numerical features, or categories for categorical features. No explicit return value is generated.


Calculate the dimension of the problem, excluding timestamps.

Description

Calculate the dimension of the problem, excluding timestamps.

Usage

problem_dimension(feature_info, is_time_series = FALSE)

Arguments

feature_info

A list containing information about each feature.

is_time_series

Boolean indicating if time series data is present.

Value

The calculated dimension based on the feature types.


Read a CSV Dataset

Description

Reads a dataset from a CSV file and optionally parses a timestamp column.

Usage

read_dataset(
  dataset_path,
  timestamp_col = "timestamp",
  timestamp_formats = c("%d/%m/%Y %H:%M:%S", "%H:%M:%S %d/%m/%Y")
)

Arguments

dataset_path

A string specifying the path to the CSV file.

timestamp_col

A string specifying the timestamp column name (default: '"timestamp"').

timestamp_formats

A vector of date-time formats to try for parsing timestamps.

Value

A data frame containing the dataset.


Apply styling to coral plots and render them with rgl

Description

Renders a 3D "coral" plot produced by 'build_coral_layout()', with edge width/color/alpha mapped from association rule metrics and node colors derived from item/type groupings. The function draws a floor grid, edges as 3D segments, nodes as spheres, and optional labels/legend.

**Required columns** - 'edges': 'x', 'y', 'z', 'x_end', 'y_end', 'z_end', 'parent_path', 'child_path', and metric columns 'support', 'confidence', 'lift'. - 'nodes': 'x', 'z', 'x_offset', 'z_offset', 'radius', 'path'.

**Optional columns** - 'nodes$item', 'nodes$feature' (for labels/legend & color-by), 'nodes$step' (roots identified as 'step == 0'), 'nodes$interval_label', 'nodes$interval_label_short' (label text when requested).

Usage

render_coral_rgl(
  nodes,
  edges,
  grid_size,
  grid_color = "grey80",
  legend = FALSE,
  label_mode = c("none", "interval", "item", "interval_short"),
  label_cex = 0.7,
  label_offset = 1.5,
  max_labels = 100,
  edge_width_metric = c("confidence", "lift", "support"),
  edge_color_metric = c("confidence", "lift", "support"),
  edge_alpha_metric = NULL,
  edge_width_range = c(1, 5),
  edge_width_transform = c("linear", "sqrt", "log"),
  edge_gradient = c("#2166AC", "#67A9CF", "#D1E5F0", "#FDDBC7", "#EF8A62", "#B2182B"),
  edge_color_transform = c("linear", "sqrt", "log"),
  edge_alpha = 0.5,
  edge_alpha_range = c(0.25, 0.5),
  edge_alpha_transform = c("linear", "sqrt", "log"),
  node_color_by = c("type", "item", "none", "edge_incoming", "edge_outgoing_mean"),
  node_gradient = "match",
  node_gradient_map = c("even", "hash", "frequency"),
  y_scale = 0,
  jitter_sd = 0,
  jitter_mode = c("deterministic", "random"),
  jitter_seed = NULL,
  return_data = FALSE
)

Arguments

nodes

data.frame; typically 'build_coral_layout()$nodes'. Must contain 'x', 'z', 'x_offset', 'z_offset', 'radius', 'path'. Optional: 'item', 'feature', 'step', 'interval_label', 'interval_label_short'.

edges

data.frame; typically 'build_coral_layout()$edges'. Must contain 'x', 'y', 'z', 'x_end', 'y_end', 'z_end', 'parent_path', 'child_path', and metric columns 'support', 'confidence', 'lift'.

grid_size

integer; the layout grid size (usually 'build_coral_layout()$grid_size').

grid_color

background grid color. Any R color spec. Default '"grey80"'.

legend

logical; draw a node legend keyed by base feature ('nodes$feature'). Requires that 'nodes$feature' and node colors are available. Default 'FALSE'.

label_mode

one of '"none"', '"interval"', '"item"', '"interval_short"'. Controls label text: interval labels, item labels, or no labels.

label_cex

numeric; label size passed to 'rgl::text3d()'. Default '0.7'.

label_offset

numeric; vertical offset (in **node radii**) applied to labels (positive values move labels downward from sphere tops). Default '1.5'.

max_labels

integer; maximum number of **non-root** labels to keep (largest radii first). Root nodes are always kept. Default '100'.

edge_width_metric

character; which metric to map to edge **width**. One of '"confidence"', '"lift"', '"support"'. Default '"confidence"'.

edge_color_metric

character; which metric to map to edge **color**. One of '"confidence"', '"lift"', '"support"'. Default '"confidence"'.

edge_alpha_metric

character or 'NULL'; which metric to map to edge **alpha** (transparency). One of '"support"', '"lift"', '"confidence"', or 'NULL' to use the constant 'edge_alpha'. Default 'NULL'.

edge_width_range

numeric length-2; min/max line width for edges after scaling. Default 'c(1, 5)'.

edge_width_transform

character; transformation for width scaling from normalized metric in '[0,1]'. One of '"linear"', '"sqrt"', '"log"'. Default '"linear"'.

edge_gradient

character vector (>= 2); color ramp for edges, passed to 'grDevices::colorRamp()'. Default 'c("#2166AC","#67A9CF","#D1E5F0","#FDDBC7","#EF8A62","#B2182B")'.

edge_color_transform

character; transformation for color scaling from normalized metric in '[0,1]'. One of '"linear"', '"sqrt"', '"log"'. Default '"linear"'.

edge_alpha

numeric in '[0,1]'; constant alpha used **only when** 'edge_alpha_metric' is 'NULL'. Default '0.6'.

edge_alpha_range

numeric length-2 in '[0,1]'; min/max alpha used **only when** 'edge_alpha_metric' is not 'NULL'. Default 'c(0.25, 0.5)'.

edge_alpha_transform

character; transformation for alpha scaling from normalized metric in '[0,1]'. One of '"linear"', '"sqrt"', '"log"'. Default '"linear"'.

node_color_by

one of '"type"', '"item"', '"none"', '"edge_incoming"', '"edge_outgoing_mean"'. Controls node coloring: - '"type"' colors by 'nodes$feature' (recommended). - '"item"' colors by 'nodes$item'. - '"none"' leaves default colors. - '"edge_incoming"' / '"edge_outgoing_mean"' are reserved for future use. **Note:** current implementation applies custom colors only for '"type"' and '"item"'. Default '"type"'.

node_gradient

either the string '"match"' to reuse 'edge_gradient' for nodes, or a character vector (>= 2) of colors to build the node palette. Default '"match"'.

node_gradient_map

one of '"even"', '"hash"', '"frequency"'; how unique labels are placed along the gradient: - '"even"': evenly spaced by sorted unique label order, - '"hash"': stable per-label positions via a lightweight hash (good for reproducibility), - '"frequency"': labels ordered by frequency (most frequent near one end). Default '"even"'.

y_scale

numeric scalar; vertical scale factor applied to each node’s normalized radial distance from its local center ('x_offset','z_offset'). '0' keeps the plot flat; try '0.5'–'0.8' for gentle relief. Default '0'.

jitter_sd

numeric; standard deviation of vertical jitter added to nodes, multiplied by the normalized radius so jitter fades toward the center. Default '0'.

jitter_mode

one of '"deterministic"' or '"random"'. Deterministic jitter derives noise from 'nodes$path' (requires that column); random jitter uses 'rnorm()'. Default '"deterministic"'.

jitter_seed

integer or 'NULL'; RNG seed for reproducible **random** jitter. Ignored for '"deterministic"' mode. Default 'NULL'.

return_data

logical; if 'TRUE', returns a list with augmented 'nodes' and 'edges' (including computed 'color', 'width', 'y', etc.) instead of just drawing. The plot is still created. Default 'FALSE'.

Details

Metric scaling uses the helper '.norm_metric()' which: 1) rescales the chosen metric to '[0,1]' over finite values, and 2) applies the selected transform: - '"linear"': identity, - '"sqrt"': emphasizes differences at the low end, - '"log"': 'log1p(9*t)/log(10)', emphasizing very small values.

Node elevation ('y') is computed as 'y_scale * r_norm' where 'r_norm' is the node’s radial distance from its center normalized to the max within that coral. Optional jitter is added (fading to zero at the center). Root nodes ('step == 0') that overlap are vertically stacked with small stems for readability.

Value

Invisibly returns 'NULL' after drawing. If 'return_data = TRUE', returns (invisibly) a list with components: - 'nodes': input 'nodes' with added columns 'y', 'color' (and possibly stacked draw positions for roots), - 'edges': input 'edges' with added columns 'width', 'color', 't_color_norm', 'y', 'y_end', and 'width_binned'.

Requirements

Requires an interactive OpenGL device ('rgl'). On headless systems, consider using an off-screen context or skipping examples.


Simple Random Search

Description

This function generates a vector of random solutions for a specified length.

Usage

rs(candidate_len)

Arguments

candidate_len

The length of the vector of random solutions.

Value

A vector of random solutions between 0 and 1.

Examples

candidate_len <- 10
random_solutions <- rs(candidate_len)
print(random_solutions)


Calculate support and confidence for an association rule.

Description

This function calculates the support and confidence for the given antecedent and consequent in the dataset instances.

Usage

supp_conf(antecedent, consequent, instances, features)

Arguments

antecedent

The antecedent part of the association rule.

consequent

The consequent part of the association rule.

instances

A data frame representing instances in the dataset.

features

A list containing information about features, including type and bounds.

Value

A list containing support and confidence values.


Write Association Rules to CSV file

Description

This function writes association rules to a CSV file. For time series datasets, it also includes start and end timestamps instead of indices.

Usage

write_association_rules_to_csv(
  rules,
  file_path,
  is_time_series = FALSE,
  timestamps = NULL
)

Arguments

rules

A list of association rules.

file_path

The file path for the CSV output.

is_time_series

A boolean flag indicating if time series information should be included.

timestamps

A vector of timestamps corresponding to the time series data.

Value

No explicit return value. The function writes association rules to a CSV file.