Package ‘otsad’

October 14, 2022
Type Package

Title Online Time Series Anomaly Detectors
Version 0.2.0

Description Implements a set of online fault detectors for time-series, called: PEWMA see M. Carter
etal. (2012) <doi:10.1109/SSP.2012.6319708>, SD-EWMA and TSSD-EWMA see H. Raza et al.
(2015) <doi:10.1016/j.patcog.2014.07.028>, KNN-CAD see E. Burnaev et al. (2016)
<arXiv:1608.04585>, KNN-LDCD see V. Ishimtsev et al. (2017) <arXiv:1706.03412> and
CAD-OSE see M. Smirnov (2018) <https://github.com/smirmik/CAD>. The first three
algorithms belong to prediction-based techniques and the last three belong to
window-based techniques. In addition, the SD-EWMA and PEWMA algorithms are algorithms
designed to work in stationary environments, while the other four
are algorithms designed to work in non-stationary environments.

Depends R (>=3.4.0)
SystemRequirements Python (>= 3.0.1); bencode-python3 (1.0.2)
License AGPL (>=3)

URL https://github.com/alaineiturria/otsad

BugReports https://github.com/alaineiturria/otsad/issues
Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Suggests testthat, stream, knitr, rmarkdown

Imports stats, ggplot2, plotly, sigmoid, reticulate

VignetteBuilder knitr

NeedsCompilation no

Author Alaifie Iturria [aut, cre],
Jacinto Carrasco [aut],
Francisco Herrera [aut],
Santiago Charramendieta [aut],
Karmele Intxausti [aut]

Maintainer Alaifie Iturria <aiturria@ikerlan.es>

https://doi.org/10.1109/SSP.2012.6319708
https://doi.org/10.1016/j.patcog.2014.07.028
https://arxiv.org/abs/1608.04585
https://arxiv.org/abs/1706.03412
https://github.com/smirmik/CAD
https://github.com/alaineiturria/otsad
https://github.com/alaineiturria/otsad/issues

2 R topics documented:

Repository CRAN
Date/Publication 2019-09-06 09:50:02 UTC

R topics documented:

ambient_temperature_system_failureo oo 3
art_daily_flatmiddle 4
art_daily_jumpsdown 4
art_daily_jumpsupo 5
art_daily_nojump 5
art_increase_spike_densityo 6
art_load_balancer_spikes L o 6
Contextual AnomalyDetector 7
CpKnnCad e 8
CpPewma e e e 10
CpSAEwma e 11
CpTsSAdEwma o e 13
cpu_utilization_asg_misconfiguration Lo 14
ec2_cpu_utilization_24ae8do oL 15
ec2_cpu_utilization_53ea38 15
ec2_cpu_utilization_5f5533 L 16
ec2_cpu_utilization_77clca e 16
ec2_cpu_utilization_825¢cc2 17
ec2_cpu_utilization_ac20cd 17
ec2_cpu_utilization fe7f93 o 18
ec2_disk_write_bytes_lef3de 18
ec2_disk_write_bytes_c0d644 19
ec2_network_in_257a54 19
ec2_network_in_Sabac7 e 20
ec2_request_latency_system_failure L. 20
elb_request_count_8c0756 21
exchange 2 cpc_results 21
exchange 2 _cpm_results 22
exchange_3_cpc_results 22
exchange_3_cpm_results L 23
exchange 4 _cpc_results 23
exchange 4 _cpm_results 24
GetDetectorSCore e e e e e e e e e e e 24
GetLabels e e e e e 26
GetNullAndPerfectScores 27
GetNumTrainingValues 28
GetWindowLength 29
GetWindowsLimits 30
grok_asg anomaly 31
iio_us_eastl_i_a2eblcd9_NetworkIn., 32
IpKnnCad e 32

IpPewma 35

ambient_temperature_system_failure 3

Index

IpSAEwma e e 38
IpTsSAdEwma o e 41
machine_temperature_system_failure oL Lo 44
NormalizeScore e 44
NYC_LAXD .« o v v v v v v e e e e e e e e e e e 45
occupancy_6005 e e e 46
occupancy_t4013 L. e e e 46
OcpPewma e 47
OcpSAEwma e 48
OcpTsSAEwma e 50
OipPewma e 51
OipSAEwma e e e e 54
OipTsSAEwma e e e 56
PlotDetections e e e e 59
rds_cpu_utilization_cc0c53 L. 61
rds_cpu_utilization_e47b3b oL 61
ReduceAnomalies e 62
rogue_agent_key_hold 64
rogue_agent key updowno o 64
speed_6005 65
speed_T7578 . . . 65
speed_t4013 L e e e e e 66
TravelTime_387 e e e e e e 66
TravelTime_451 e e e 67
Twitter_volume AAPL e 67
Twitter_volume_AMZN e 68
Twitter_volume_CRM e 68
Twitter_volume_CVS e 69
Twitter_volume_FB e 69
Twitter_volume_GOOG e 70
Twitter_volume_IBM 70
Twitter_volume_KO e 71
Twitter_volume_PFE e 71
Twitter_volume_UPS e 72

73

ambient_temperature_system_failure

ambient_temperature_system_failure.

Description

The ambient temperature in an office setting.

Usage

ambient_temperature_system_failure

4 art_daily_jumpsdown

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

art_daily_flatmiddle art_daily_flatmiddle.

Description

Artificially-generated data with varying types of anomalies

Usage

art_daily_flatmiddle

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

art_daily_jumpsdown art_daily_jumpsdown

Description

Artificially-generated data with varying types of anomalies

Usage

art_daily_jumpsdown

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

art_daily_jumpsup

art_daily_jumpsup art_daily_jumpsup

Description

Artificially-generated data with varying types of anomalies

Usage

art_daily_jumpsup

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

art_daily_nojump art_daily_nojump

Description

Artificially-generated data with varying types of anomalies

Usage

art_daily_nojump

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

6 art_load_balancer._spikes

art_increase_spike_density
art_increase_spike_density

Description

Artificially-generated data with varying types of anomalies

Usage

art_increase_spike_density

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

art_load_balancer_spikes
art_load_balancer_spikes.

Description

Artificially-generated data with varying types of anomalies

Usage

art_load_balancer_spikes

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

Contextual AnomalyDetector 7

ContextualAnomalyDetector
Contextual Anomaly Detector - Open Source (CAD)

Description

ContextualAnomalyDetector calculates the anomaly score of a dataset using the notion of con-
texts conformed by facts and provides probabilistic abnormality scores.

Usage

ContextualAnomalyDetector(data, rest.period = max(min(150,
round(length(data) * ©0.03), 1)), max.left.semicontexts = 7,
max.active.neurons = 15, num.norm.value.bits = 3,
base.threshold = 0.75, min.value = min(data, na.rm = T),
max.value = max(data, na.rm = T), python.object = NULL, 1lib = @)

Arguments
data Numerical vector with training and test dataset.
rest.period Training period after an anomaly.

max.left.semicontexts
Number of semicontexts that should be maintained in memory.

max.active.neurons

Number of neurons of the model.
num.norm.value.bits

Granularity of the transformation into discrete values

base.threshold Threshold to be considered an anomaly.
min.value Minimum expected value.

max.value Maximum expected value.
python.object Python object for incremental processing.

lib 0 to run the original python script, 1 to get the same results on all operating
systems.

Details

data must be a numerical vector without NA values. threshold must be a numeric value be-
tween O and 1. If the anomaly score obtained for an observation is greater than the threshold,
the observation will be considered abnormal. Requires hashlib (included in python installation) and
bencode-python3 (which can be installed using pip) python libraries.

8 CpKnnCad

Value
List

result Data frame with anomaly . score and is. anomaly comparing the anomaly score
with base. threshold.

python.object ContextualAnomalyDetector Python object used in online anomaly detection

References

Smirnov, M. (2018). CAD: Contextual Anomaly Detector. https://github.com/smirmik/CAD

Examples

Generate data

set.seed(100)

n <- 200

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[150] <- 170

df <- data.frame(timestamp = 1:n, value = x)

Calculate anomalies
result <- ContextualAnomalyDetector(data = df$value, rest.period = 10, base.threshold = 0.9)
Plot results

res <- cbind(df, result$result)
PlotDetections(res, title = "CAD_OSE ANOMALY DETECTOR")

CpKnnCad Classic processing KNN based Conformal Anomaly Detector (KNN-
CAD)

Description

CpKnnCad calculates the anomalies of a dataset using classical processing based on the KNN-CAD
algorithm. KNN-CAD is a model-free anomaly detection method for univariate time-series which
adapts itself to non-stationarity in the data stream and provides probabilistic abnormality scores
based on the conformal prediction paradigm.

Usage

CpKnnCad(data, n.train, threshold =1, 1 =19, k = 27,
ncm. type = "ICAD", reducefp = TRUE)

CpKnnCad

Arguments

data
n.train
threshold
1

k

ncm. type

reducefp

Details

data must be a numerical vector without NA values. threshold must be a numeric value between 0
and 1. If the anomaly score obtained for an observation is greater than the threshold, the observa-
tion will be considered abnormal. 1 must be a numerical value between 1 and 1/n; n being the length
of the training data. Take into account that the value of 1 has a direct impact on the computational
cost, so very high values will make the execution time longer. k parameter must be a numerical
n.train value. ncm.type determines the non-conformity measurement to be
used. ICAD calculates dissimilarity as the sum of the distances of the nearest k neighbours and

value less than the

Numerical vector with training and test dataset.

Number of points of the dataset that correspond to the training set.
Anomaly threshold.

Window length.

Number of neighbours to take into account.

Non Conformity Measure to use "ICAD" or "LDCD"

If TRUE reduces false positives.

LDCD as the average.

Value

dataset conformed by the following columns:

is.anomaly

anomaly.score

References

V. Ishimtsev, 1. Nazarov, A. Bernstein and E. Burnaev. Conformal k-NN Anomaly Detector for

1 if the value is anomalous, O otherwise.

Probability of anomaly.

Univariate Data Streams. ArXiv e-prints, jun. 2017.

Examples

Generate data
set.seed(100)
n <- 350

x <- sample(1:100, n, replace = TRUE)
x[70:90] <- sample(110:115, 21, replace = TRUE)

x[25] <- 200
x[320] <- 170

df <- data.frame(timestamp = 1:n, value = x)

Set parameters

params.KNN <- list(threshold = 1, n.train

50, 1 =19, k = 17)

Calculate anomalies
result <- CpKnnCad(

10 CpPewma

data = df$value,
n.train = params.KNN$n.train,
threshold = params.KNN$threshold,
1 = params.KNN$1,
k = params.KNN$k,
ncm. type = "ICAD",
reducefp = TRUE
)

Plot results
res <- cbind(df, result)
PlotDetections(res, title = "KNN-CAD ANOMALY DETECTOR")

CpPewma Classic Processing Probabilistic-EWMA (PEWMA).

Description

CpPewma calculates the anomalies of a dataset using classical processing based on the PEWMA
algorithm. This algorithm is a probabilistic method of EWMA which dynamically adjusts the pa-
rameterization based on the probability of the given observation. This method produces dynamic,
data-driven anomaly thresholds which are robust to abrupt transient changes, yet quickly adjust to
long-term distributional shifts. See also OcpPewma, the optimized and faster function of the this
function.

Usage

CpPewma(data, n.train = 5, alpha® = 0.8, beta = 0.3, 1 = 3)

Arguments
data Numerical vector with training and test dataset.
n.train Number of points of the dataset that correspond to the training set.
alpha@ Maximal weighting parameter.
beta Weight placed on the probability of the given observation.
1 Control limit multiplier.
Details

data must be a numerical vector without NA values. alpha® must be a numeric value where 0
< alpha@ < 1. If a faster adjustment to the initial shift is desirable, simply lowering alpha@ will
suffice. beta is the weight placed on the probability of the given observation. It must be a numeric
value where 0 <= beta <= 1. Note that if beta equals 0, PEWMA converges to a standard EWMA.
Finally 1 is the parameter that determines the control limits. By default, 3 is used.

CpSdEwma 11

Value

dataset conformed by the following columns:

is.anomaly 1 if the value is anomalous 0, otherwise.
ucl Upper control limit.
lcl Lower control limit.

References

M. Carter, Kevin y W. Streilein. Probabilistic reasoning for streaming anomaly detection. 2012
IEEE Statistical Signal Processing Workshop (SSP), pp. 377-380, Aug 2012.

Examples

Generate data

set.seed(100)

n <- 180

x <- sample(1:100, n, replace = TRUE)
x[70:90] <- sample(110:115, 21, replace
x[25] <- 200

x[150] <- 170

df <- data.frame(timestamp = 1:n, value = x)

TRUE)

Calculate anomalies

result <- CpPewma(
data = df$value,
n.train = 5,

alphao = 0.8,
beta = 0.1,
1=3

)

Plot results
res <- cbind(df, result)
PlotDetections(res, title = "PEWMA ANOMALY DETECTOR")

CpSdEwma Classic Processing Shift-Detection based on EWMA (SD-EWMA).

Description

CpSdEwma calculates the anomalies of a dataset using classical processing based on the SD-EWMA
algorithm. This algorithm is a novel method for covariate shift-detection tests based on a two-
stage structure for univariate time-series. It works in an online mode and it uses an exponentially
weighted moving average (EWMA) model based control chart to detect the covariate shift-point in
non-stationary time-series. See also OcpSdEwma, the optimized and faster function of this function.

12 CpSdEwma

Usage

CpSdEwma(data, n.train, threshold = 0.01, 1 = 3)

Arguments
data Numerical vector with training and test dataset.
n.train Number of points of the dataset that correspond to the training set.
threshold Error smoothing constant.
1 Control limit multiplier.
Details

data must be a numerical vector without NA values. threshold must be a numeric value between
0 and 1. It is recommended to use low values such as 0.01 or 0.05. By default, 0.01 is used. Finally,
1 is the parameter that determines the control limits. By default, 3 is used.

Value

dataset conformed by the following columns:

is.anomaly 1 if the value is anomalous 0, otherwise.
ucl Upper control limit.
lcl Lower control limit.

References

Raza, H., Prasad, G., & Li, Y. (03 de 2015). EWMA model based shift-detection methods for
detecting covariate shifts in non-stationary environments. Pattern Recognition, 48(3), 659-669.

Examples

Generate data

set.seed(100)

n <- 180

x <- sample(1:100, n, replace = TRUE)
x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[150] <- 170

df <- data.frame(timestamp = 1:n, value

x)

Calculate anomalies

result <- CpSdEwma(
data = df$value,
n.train = 5,
threshold = 0.01,
1=3

)

res <- cbind(df, result)

CpTsSdEwma 13

Plot results
PlotDetections(res, title = "KNN-CAD ANOMALY DETECTOR")

CpTsSdEwma Classic Processing Two-Stage Shift-Detection based on EWMA

Description

CpTsSdEwma calculates the anomalies of a dataset using classical processing based on the SD-
EWMA algorithm. This algorithm is a novel method for covariate shift-detection tests based on
a two-stage structure for univariate time-series. This algorithm works in two phases. In the first
phase, it detects anomalies using the SD-EWMA CpSdEwma algorithm. In the second phase, it
checks the veracity of the anomalies using the Kolmogorov-Simirnov test to reduce false alarms.
See also OcpTsSdEwma, the optimized and faster function of this function.

Usage

CpTsSdEwma(data, n.train, threshold = .01, 1 = 3, m = 5)

Arguments
data Numerical vector with training and test dataset.
n.train Number of points of the dataset that correspond to the training set.
threshold Error smoothing constant.
1 Control limit multiplier.
m Length of the subsequences for applying the Kolmogorov-Smirnov test.
Details

data must be a numerical vector without NA values. threshold must be a numeric value between
0 and 1. It is recommended to use low values such as 0.01 or 0.05. By default, 0.01 is used. Finally,
1 is the parameter that determines the control limits. By default, 3 is used. m is the length of the
subsequences for applying the Kolmogorov-Smirnov test. By default, 5 is used. It should be noted
that the last m values will not been verified because another m values are needed to be able to perform
the verification.

Value
dataset conformed by the following columns:
is.anomaly 1 if the value is anomalous, 0 otherwise.

ucl Upper control limit.

lcl Lower control limit.

14 cpu_utilization_asg_misconfiguration

References

Raza, H., Prasad, G., & Li, Y. (03 de 2015). EWMA model based shift-detection methods for
detecting covariate shifts in non-stationary environments. Pattern Recognition, 48(3), 659-669.

Examples

Generate data

set.seed(100)

n <- 180

x <- sample(1:100, n, replace = TRUE)
x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[150] <- 170

df <- data.frame(timestamp = 1:n, value

X)

Calculate anomalies

result <- CpTsSdEwma(
data = df$value,
n.train = 5,
threshold = 0.01,
1=3,
m = 20

)

res <- cbind(df, result)

Plot results
PlotDetections(res, title = "TSSD_EWMA ANOMALY DETECTOR")

cpu_utilization_asg_misconfiguration
cpu_utilization_asg_misconfiguration.

Description

From Amazon Web Services (AWS) monitoring CPU usage — i.e. average CPU usage across a
given cluster. When usage is high, AWS spins up a new machine, and uses fewer machines when
usage is low.

Usage

cpu_utilization_asg_misconfiguration

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

https://github.com/numenta/NAB/blob/master/data/README.md

ec2_cpu_utilization_24ae8d 15

ec2_cpu_utilization_24ae8d
ec2_cpu_utilization_24ae8d.

Description

AWS server metrics as collected by the AmazonCloudwatch service. Example metrics include CPU
Utilization, Network Bytes In, and Disk Read Bytes..

Usage

ec2_cpu_utilization_24ae8d

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

ec2_cpu_utilization_53ea38
ec2_cpu_utilization_53ea38.

Description

AWS server metrics as collected by the AmazonCloudwatch service. Example metrics include CPU
Utilization, Network Bytes In, and Disk Read Bytes..

Usage

ec2_cpu_utilization_53ea38

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

16 ec2_cpu_utilization_77clca

ec2_cpu_utilization_5f5533
ec2_cpu_utilization_5f5533.

Description

AWS server metrics as collected by the AmazonCloudwatch service. Example metrics include CPU
Utilization, Network Bytes In, and Disk Read Bytes..

Usage

ec2_cpu_utilization_5f5533

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

ec2_cpu_utilization_77clca
ec2_cpu_utilization_77clca.

Description

AWS server metrics as collected by the AmazonCloudwatch service. Example metrics include CPU
Utilization, Network Bytes In, and Disk Read Bytes..

Usage

ec2_cpu_utilization_77clca

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

ec2_cpu_utilization_825cc2 17

ec2_cpu_utilization_825cc2
ec2_cpu_utilization_825cc2.

Description

AWS server metrics as collected by the AmazonCloudwatch service. Example metrics include CPU
Utilization, Network Bytes In, and Disk Read Bytes..

Usage

ec2_cpu_utilization_825cc2

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

ec2_cpu_utilization_ac20cd
ec2_cpu_utilization_ac20cd.

Description

AWS server metrics as collected by the AmazonCloudwatch service. Example metrics include CPU
Utilization, Network Bytes In, and Disk Read Bytes..

Usage

ec2_cpu_utilization_ac20cd

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

18 ec2_disk_write_bytes_lef3de

ec2_cpu_utilization_fe7f93
ec2_cpu_utilization_fe7f93.

Description

AWS server metrics as collected by the AmazonCloudwatch service. Example metrics include CPU
Utilization, Network Bytes In, and Disk Read Bytes..

Usage

ec2_cpu_utilization_fe7f93

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

ec2_disk_write_bytes_lef3de
ec2_disk_write_bytes_Ief3de.

Description

AWS server metrics as collected by the AmazonCloudwatch service. Example metrics include CPU
Utilization, Network Bytes In, and Disk Read Bytes..

Usage

ec2_disk_write_bytes_lef3de

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

ec2_disk_write_bytes_c0d644 19

ec2_disk_write_bytes_c0d644
ec2_disk_write_bytes_c0d644.

Description

AWS server metrics as collected by the AmazonCloudwatch service. Example metrics include CPU
Utilization, Network Bytes In, and Disk Read Bytes..

Usage

ec2_disk_write_bytes_c0d644

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

ec2_network_in_257a54 ec2_network_in_257a54.

Description

AWS server metrics as collected by the AmazonCloudwatch service. Example metrics include CPU
Utilization, Network Bytes In, and Disk Read Bytes..

Usage

ec2_network_in_257a54

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

20 ec2_request_latency_system_failure

ec2_network_in_5abac7 ec2_network_in_5Sabac?.

Description

AWS server metrics as collected by the AmazonCloudwatch service. Example metrics include CPU
Utilization, Network Bytes In, and Disk Read Bytes..

Usage

ec2_network_in_5abac7

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

ec2_request_latency_system_failure
ec2_request_latency_system_failure.

Description

CPU usage data from a server in Amazon’s East Coast datacenter. The dataset ends with complete
system failure resulting from a documented failure of AWS API servers.

Usage

ec2_request_latency_system_failure

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

elb_request_count_8c0756 21

elb_request_count_8c0756
elb_request_count_8c0756.

Description

AWS server metrics as collected by the AmazonCloudwatch service. Example metrics include CPU
Utilization, Network Bytes In, and Disk Read Bytes..

AWS server metrics as collected by the AmazonCloudwatch service. Example metrics include CPU
Utilization, Network Bytes In, and Disk Read Bytes..

Usage
elb_request_count_8c0756
elb_request_count_8c0756

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

exchange_2_cpc_results
exchange_2_cpc_results.

Description
Online advertisement clicking rates, where the metrics are cost-per-click (CPC) and cost per thou-
sand impressions (CPM). One of the files is normal, without anomalies.

Usage

exchange_2_cpc_results

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

22 exchange_3_cpc_results

exchange_2_cpm_results
exchange_2_cpm_results.

Description

Online advertisement clicking rates, where the metrics are cost-per-click (CPC) and cost per thou-
sand impressions (CPM). One of the files is normal, without anomalies.

Usage

exchange_2_cpm_results

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

exchange_3_cpc_results
exchange_3_cpc_results.

Description

Online advertisement clicking rates, where the metrics are cost-per-click (CPC) and cost per thou-
sand impressions (CPM). One of the files is normal, without anomalies.

Usage

exchange_3_cpc_results

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

exchange_3_cpm_results 23

exchange_3_cpm_results
exchange_3_cpm_results.

Description

Online advertisement clicking rates, where the metrics are cost-per-click (CPC) and cost per thou-
sand impressions (CPM). One of the files is normal, without anomalies.

Usage

exchange_3_cpm_results

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

exchange_4_cpc_results
exchange_4_cpc_results.

Description

Online advertisement clicking rates, where the metrics are cost-per-click (CPC) and cost per thou-
sand impressions (CPM). One of the files is normal, without anomalies.

Usage

exchange_4_cpc_results

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

24 GetDetectorScore

exchange_4_cpm_results
exchange_4_cpm_results.

Description
Online advertisement clicking rates, where the metrics are cost-per-click (CPC) and cost per thou-
sand impressions (CPM). One of the files is normal, without anomalies.

Usage

exchange_4_cpm_results

Format

A data frame with three variables: timestamp, value, is.real.anomaly.
For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

GetDetectorScore Get detector score

Description

GetDetectorScore Calculates the start and end positions of each window that are focused on the
real anomalies. This windows can be used to know if the detected anomaly is a true positive or not.

Usage
GetDetectorScore(data, print = FALSE, title = "")
Arguments
data All dataset with training and test datasets and with at least timestamp, value,
is.anomaly and is.real.anomaly columns.
print If TRUE shows a graph with results.
title Title of the graph.
Details

data must be a data.frame with timestamp, value, is.anomaly and is.real.anomaly columns.
timestamp column can be numeric, of type POSIXct, or a character type date convertible to
POSIXct.

This function calculates the scores based on three different profiles. Each label tp, fp, tn, fn is
associated with a weight to give a more realistic score. For the standard profile weights are tp = 1,
tn =1, fp, =0.11, and fn = 1. For the reward_low_FP_rate profile weights are tp =1, tn =1, fp, =
0.22, and fn = 1. For the reward_low_FN_rate profile weights are tp =1, tn = 1, fp, = 0.11, and fn
=2.

https://github.com/numenta/NAB/blob/master/data/README.md

GetDetectorScore

Value

25

List conformed by the following items:

data

standard

low_FP_rate

low_FN_rate

tp
tn
fp
fn

References

Same data set with additional columns such as label, start.limit, end.limit,
standard. score and etc.

Total score obtained by the detector using the weights of the standard profile.

Total score obtained by the detector using the weights of the reward_low_FP_rate
profile.

Total score obtained by the detector using the weights of the reward_low_FN_rate
profile.

Number of true positives
Number of true negatives
Number of false positives

Number of false negatives

A. Lavin and S. Ahmad, “Evaluating Real-time Anomaly Detection Algorithms — the Numenta
Anomaly Benchmark,” in 14th International Conference on Machine Learning and Applications
(IEEE ICMLA’15), 2015.

Examples

Generate data
set.seed(100)
n <- 180

x <- sample(1:100, n, replace = TRUE)
x[70:90] <- sample(110:115, 21, replace = TRUE)

x[25] <- 200
x[150] <- 170

df <- data.frame(timestamp = 1:n, value = x)

Add is.real.anomaly column
df$is.real.anomaly <- @

dflc(25,80,150),

"is.real.anomaly”] <- 1

Calculate anomalies
result <- CpSdEwma(
data = df$value,

n.train = 5,

threshold = 0.01,

1=3
)
res <- cbind(df,

result)

Get detector score
GetDetectorScore(res, print = FALSE, title = "")

26 GetLabels

GetlLabels Get Lables

Description

GetLabels Calculates the start and end positions of each window that are focused on the real
anomalies. This windows can be used to know if the detected anomaly is a true positive or not.

Usage
GetLabels(data)
Arguments
data All dataset with training and test datasets with at least timestamp, value, is.anomaly,
is.real.anomaly, start.limit and end.limit columns.
Details

data must be a data.frame with timestamp, value, is.anomaly and is.real.anomaly columns.
timestamp column can be numeric, of type POSIXct, or a character type date convertible to
POSIXct. see GetWindowsLimits to know more about how to get start.limit and end.limit
columns.

Value

Same data set with two additional columns label and first.tp. first.tp indicates for each
window Which is the position of first true positive. label indicates for each detection if it is a TP,
FP, TN or FN.

References

A. Lavin and S. Ahmad, “Evaluating Real-time Anomaly Detection Algorithms — the Numenta
Anomaly Benchmark,” in 14th International Conference on Machine Learning and Applications
(IEEE ICMLA’15), 2015.

Examples

Generate data

set.seed(100)

n <- 180

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[150] <- 170

df <- data.frame(timestamp = 1:n, value = x)

Add is.real.anomaly column
df$is.real.anomaly <- @

GetNullAndPertectScores 27

df[c(25,80,150), "is.real.anomaly”] <- 1

Calculate anomalies

result <- CpSdEwma(
data = df$value,
n.train = 5,
threshold = 0.01,
1 =3

)

res <- cbind(df, result)

Get Window Limits
data <- GetWindowsLimits(res)
data[data$is.real.anomaly == 1,]

Get labels
data <- GetLabels(data)
dataldata$is.real.anomaly == | data$is.anomaly == 1,]

Plot results
PlotDetections(res, print.real.anomaly = TRUE, print.time.window = TRUE)

GetNullAndPerfectScores
Get Null And Perfect Scores

Description

GetNullAndPerfectScores Calculates the score of Perfect and Null detectors scores. Perfect de-
tector is one that outputs all true positives and no false positives. And Null detector is one that
outputs no anomaly detections.

Usage

GetNullAndPerfectScores(data)

Arguments
data All dataset with training and test datasets and with at least timestamp, value
and is.real.anomaly columns.
Details

This function calculates the scores based on three different profiles. Each tp, fp, tn, fn label is
associated with a weight to give a more realistic score. For the standard profile weights are tp = 1,
tn =1, fp, =0.11, and fn = 1. For the reward_low_FP_rate profile weights are tp =1, tn =1, fp, =
0.22, and fn = 1. For the reward_low_FN_rate profile weights are tp =1, tn = 1, fp, = 0.11, and fn
=2.

28 GetNumTraining Values

Value

data.frame with null and perfect detectors scores for each profile.

References

A. Lavin and S. Ahmad, “Evaluating Real-time Anomaly Detection Algorithms — the Numenta
Anomaly Benchmark,” in 14th International Conference on Machine Learning and Applications
(IEEE ICMLA’15), 2015.

Examples

Generate data

set.seed(100)

n <- 180

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[150] <- 170

df <- data.frame(timestamp = 1:n, value = x)

Add is.real.anomaly column
df$is.real.anomaly <- @
df[c(25,80,150), "is.real.anomaly”] <- 1

Get null and perfect scores
GetNullAndPerfectScores(df)

GetNumTrainingValues Get Number of Training Values

Description

GetNumTrainingValues Calculates the number of values to be used as a training set.

Usage

GetNumTrainingValues(n.row, prob.percent = 0.15)

Arguments

n.row Number of rows of the all dataset with training and test values.

prob.percent Percentage of training values

Details

the number of values to be used as a training set is calculated as a minimum between 15% of the
number of rows in the dataset and 15% of 5000.

GetWindowLength 29

Value

Number of training values.

References

A. Lavin and S. Ahmad, “Evaluating Real-time Anomaly Detection Algorithms — the Numenta
Anomaly Benchmark,” in 14th International Conference on Machine Learning and Applications
(IEEE ICMLA’15), 2015.

Examples

Generate data

set.seed(100)

n <- 180

X <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[150] <- 170

df <- data.frame(timestamp = 1:n, value = x)

Get number of instances to train phase
GetNumTrainingValues(nrow(df))

GetWindowLength Get Window Length

Description

GetWindowLength Calculates the size of the window. This window focuses on the real anomaly
and it can be used to know if the detected anomaly is a true positive or not.

Usage

GetWindowLength(data.length, num.real.anomaly, window.length.perc = 0.1)

Arguments

data.length Dataset length.
num.real.anomaly

Number of real anomalies contained in the data set.
window. length.perc

Window length in percentage of the total data

Details

nrow.data and num.real.anomaly must be numeric. Window length is calculated by default as
10% of the length of the data set divided by the number of real anomalies contained in it.

30 GetWindowsLimits

Value

Window length as numeric.

References

A. Lavin and S. Ahmad, “Evaluating Real-time Anomaly Detection Algorithms — the Numenta
Anomaly Benchmark,” in 14th International Conference on Machine Learning and Applications
(IEEE ICMLA 15), 2015.

Examples

Generate data

set.seed(100)

n <- 180

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[150] <- 170

df <- data.frame(timestamp = 1:n, value = x)

Add is.real.anomaly column
df$is.real.anomaly <- @
df[c(25,80,150), "is.real.anomaly"] <- 1

Get window length
GetWindowLength(data.length = nrow(df), num.real.anomaly = 3)

GetWindowsLimits Get windows limits

Description

GetWindowsLimits Calculates the start and end positions of each window that are focused on the
real anomalies. This windows can be used to know if the detected anomaly is a true positive or not.

Usage
GetWindowsLimits(data, windowLength = NULL)

Arguments

data All dataset with training and test datasets and with at least timestamp, value
and is.real.anomaly columns.

windowLength Window length. See GetWindowLength.

Details

data must be a data.frame with timestamp, value, is.anomaly and is.real.anomaly columns.
timestamp column can be numeric, of type POSIXct, or a character type date convertible to
POSIXct. windowLength must be numeric value.

grok_asg_anomaly 31

Value

Same data set with two additional columns start.limit and end.limit where for each is.real.anomaly
equal to 1 is indicated the position in the data set where each window starts and ends. If two anoma-
lies fall within the same window, the start and end positions are only indicated on the first of them.

References

A. Lavin and S. Ahmad, “Evaluating Real-time Anomaly Detection Algorithms — the Numenta
Anomaly Benchmark,” in 14th International Conference on Machine Learning and Applications
(IEEE ICMLA'15), 2015.

Examples

Generate data

set.seed(100)

n <- 180

X <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[150] <- 170

df <- data.frame(timestamp = 1:n, value = x)

Add is.real.anomaly column
df$is.real.anomaly <- @
df[c(25,80,150), "is.real.anomaly”] <- 1

Get Window Limits
data <- GetWindowsLimits(df)
dataldata$is.real.anomaly == 1,]

grok_asg_anomaly grok_asg_anomaly.

Description
AWS server metrics as collected by the AmazonCloudwatch service. Example metrics include CPU
Utilization, Network Bytes In, and Disk Read Bytes..

Usage

grok_asg_anomaly

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

https://github.com/numenta/NAB/blob/master/data/README.md

32 IpKnnCad

iio_us_eastl1_i_a2eblcd9_NetworkIn
ilo_us_eastl_i_a2eblcd9_Networkin.

Description
AWS server metrics as collected by the AmazonCloudwatch service. Example metrics include CPU
Utilization, Network Bytes In, and Disk Read Bytes..

Usage

iio_us_eastl1_i_a2eblcd9_NetworkIn

Format

A data frame with three variables: timestamp, value, is.real.anomaly.
For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

IpKnnCad Incremental processing KNN based Conformal Anomaly Detector
(KNN-CAD,).

Description

IpKnnCad allows the calculation of anomalies using SD-EWMA in an incremental processing mode.
KNN-CAD is a model-free anomaly detection method for univariate time-series which adapts itself
to non-stationarity in the data stream and provides probabilistic abnormality scores based on the
conformal prediction paradigm.

Usage

IpKnnCad(data, n.train, threshold =1, 1 =19, k = 27,
ncm. type = "ICAD"”, reducefp = TRUE, to.next.iteration = NULL)

Arguments
data Numerical vector with training and test dataset.
n.train Number of points of the dataset that correspond to the training set.
threshold Anomaly threshold.
1 Window length.
k Number of neighbours to take into account.
ncm. type Non Conformity Measure to use "ICAD" or "LDCD"
reducefp If TRUE reduces false positives.

to.next.iteration
list with the necessary parameters to execute in the next iteration.

https://github.com/numenta/NAB/blob/master/data/README.md

IpKnnCad 33

Details

data must be a numerical vector without NA values. threshold must be a numeric value between 0
and 1. If the anomaly score obtained for an observation is greater than the threshold, the observa-
tion will be considered abnormal. 1 must be a numerical value between 1 and 1/n; n being the length
of the training data. Take into account that the value of 1 has a direct impact on the computational
cost, so very high values will make the execution time longer. k parameter must be a numerical
value less than the n.train value. ncm. type determines the non-conformity measurement to be
used. ICAD calculates dissimilarity as the sum of the distances of the nearest k neighbours and
LDCD as the average. to.next.iteration is the last result returned by some previous execution
of this algorithm. The first time the algorithm is executed its value is NULL. However, to run a new
batch of data without having to include it in the old dataset and restart the process, this parameter
returned by the last run is only needed.

This algorithm can be used for both classical and incremental processing. It should be noted that
in case of having a finite dataset, the CpKnnCad algorithm is faster. Incremental processing can be
used in two ways. 1) Processing all available data and saving calibration.alpha and last.data
for future runs with new data. 2) Using the stream library for when there is much data and it does
not fit into the memory. An example has been made for this use case.

Value

dataset conformed by the following columns:

is.anomaly 1 if the value is anomalous 0, otherwise.

anomaly.score Probability of anomaly.
to.next.iteration
Last result returned by the algorithm. It is a list containing the following items.

* training.set Last training set values used in the previous iteration and required for the next
run.

* calibration.set Last calibration set values used in the previous iteration and required for
the next run.

* sigma Last covariance matrix calculated in the previous iteration and required for the next
run.

* alphas Last calibration alpha values calculated in the previous iteration and required for the
next run.

e last.data Last values of the dataset converted into multi-dimensional vectors..

* pred Parameter that is used to reduce false positives. Only necessary in case of reducefp is
TRUE.

* record.count Number of observations that have been processed up to the last iteration.

References

V. Ishimtsev, 1. Nazarov, A. Bernstein and E. Burnaev. Conformal k-NN Anomaly Detector for
Univariate Data Streams. ArXiv e-prints, jun. 2017.

https://CRAN.R-project.org/package=stream

34 IpKnnCad

Examples

EXAMPLE 1: —---—mm--—mmmmmmmmm -
It can be used in the same way as with CpKnnCad passing the whole dataset as
an argument.

Generate data

set.seed(100)

n <- 500

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[320] <- 170

df <- data.frame(timestamp = 1:n, value = x)

Set parameters
params.KNN <- list(threshold = 1, n.train =50, 1 =19, k = 17)

Calculate anomalies
result <- IpKnnCad(
data = df$value,
n.train = params.KNN$n.train,
threshold = params.KNN$threshold,
1 = params.KNN$1,
k = params.KNN$k,
ncm.type = "ICAD",
reducefp = TRUE

Plot results
res <- cbind(df, is.anomaly = result$is.anomaly)
PlotDetections(res, print.time.window = FALSE, title = "KNN-CAD ANOMALY DETECTOR")

#f EXAMPLE 2: —————————mmmmmmm oo
You can use it in an incremental way. This is an example using the stream
library. This library allows the simulation of streaming operation.

install.packages("stream")
library("stream”)

Generate data

set.seed(100)

n <- 500

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[320] <- 170

df <- data.frame(timestamp = 1:n, value = x)
dsd_df <- DSD_Memory (df)

Initialize parameters for the loop
last.res <- NULL
res <- NULL

IpPewma 35

nread <- 100
numlter <- n%/%nread

Set parameters
params.KNN <- list(threshold = 1, n.train =50, 1 =19, k = 17)

Calculate anomalies
for(i in T:numlIter) {
read new data
newRow <- get_points(dsd_df, n = nread, outofpoints = "ignore")
calculate if it's an anomaly
last.res <- IpKnnCad(
data = newRow$value,
n.train = params.KNN$n.train,
threshold = params.KNN$threshold,
1 = params.KNN$1,
k = params.KNN$k,
ncm. type = "ICAD",
reducefp = TRUE,
to.next.iteration = last.res$to.next.iteration
)
prepare the result
if(!lis.null(last.res$is.anomaly)){
res <- rbind(res, cbind(newRow, is.anomaly = last.res$is.anomaly))
3
3

Plot results
PlotDetections(res, title = "KNN-CAD ANOMALY DETECTOR")

IpPewma Incremental Processing Probabilistic-EWMA (PEWMA).

Description

IpPewma allows the calculation of anomalies using PEWMA in an incremental processing mode.
See also 0ipPewma, the optimized and faster function of this function This algorithm is a probabilis-
tic method of EWMA which dynamically adjusts the parameterization based on the probability of
the given observation. This method produces dynamic, data-driven anomaly thresholds which are
robust to abrupt transient changes, yet quickly adjust to long-term distributional shifts.

Usage

IpPewma(data, n.train = 5, alpha@® = 0.8, beta = 0, 1 = 3,
last.res = NULL)

36 IpPewma
Arguments

data Numerical vector with training and test dataset.

n.train Number of points of the dataset that correspond to the training set.

alpha@ Maximal weighting parameter.

beta Weight placed on the probability of the given observation.

1 Control limit multiplier.

last.res Last result returned by the algorithm.
Details

data must be a numerical vector without NA values. alpha® must be a numeric value where 0
< alpha@ < 1. If a faster adjustment to the initial shift is desirable, simply lowering alpha@ will
suffice. beta is the weight placed on the probability of the given observation. it must be a numeric
value where 0 <= beta <= 1. Note that beta equals 0, PEWMA converges to a standard EWMA.
Finally 1 is the parameter that determines the control limits. By default, 3 is used. last.res is the
last result returned by some previous execution of this algorithm. The first time the algorithm is
executed its value is NULL. However, to run a new batch of data without having to include it in the
old dataset and restart the process, the two parameters returned by the last run are only needed.

This algorithm can be used for both classical and incremental processing. It should be noted that in
case of having a finite dataset the CpPewma or OcpPewma algorithms are faster. Incremental process-
ing can be used in two ways. 1) Processing all available data and saving last.res for future runs
in which there is new data. 2) Using the stream library for when there is too much data and it does
not fit into the memory. An example has been made for this use case.

Value

A list of the following items.

result dataset conformed by the following columns.

e is.anomaly 1 if the value is anomalous 0, otherwise.
* ucl Upper control limit.

¢ 1cl Lower control limit.

last.res Last result returned by the algorithm. Is a dataset containing the parameters
calculated in the last iteration and necessary for the next one.

References

M. Carter, Kevin y W. Streilein. Probabilistic reasoning for streaming anomaly detection. 2012
IEEE Statistical Signal Processing Workshop (SSP), pp. 377-380, Aug 2012.

https://CRAN.R-project.org/package=stream

IpPewma

Examples

EXAMPLE 1: —---—mm--—mmmmmmmmm -
It can be used in the same way as with CpPewma passing the whole dataset as
an argument.

Generate data

set.seed(100)

n <- 350

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[320] <- 170

df <- data.frame(timestamp = 1:n,value = x)

Calculate anomalies
result <- IpPewma(

data = df$value,
alphao = 0.8,
beta = 0.1,
n.train = 5,

1 =3,

last.res = NULL

)
res <- cbind(df, result$result)

Plot results
PlotDetections(res, title = "PEWMA ANOMALY DETECTOR")

EXAMPLE 2: -—-——-——-——-——-——-————
You can use it in an incremental way. This is an example using the stream
library. This library allows the simulation of streaming operation.

install.packages("stream")
library("stream")

Generate data

set.seed(100)

n <- 500

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[320] <- 170

df <- data.frame(timestamp = 1:n, value = x)
dsd_df <- DSD_Memory (df)

Initialize parameters for the loop
last.res <- NULL

res <- NULL

nread <- 100

numIter <- n%/%nread

Calculate anomalies

38

for(i in 1:numlter) {

#

newRow <- get_points(dsd_df, n =

#

read new data

calculate if it's an anomaly

last.res <- IpPewma(

)
#

data = newRow$value,
n.train = 5,

alphao = 0.8,

beta = 0.1,

1 =3,

last.res = last.res$last.res

prepare the result

if(!lis.null(last.res$result)){

3
}

res <- rbind(res, chind(newRow,

Plot results
PlotDetections(res, title = "PEWMA ANOMALY DETECTOR")

IpSdEwma

nread, outofpoints = "ignore")

last.res$result))

IpSdEwma Incremental

EWMA).

Processing Shift-Detection based on EWMA (SD-

Description

IpSdEwma allows the calculation of anomalies using SD-EWMA in an incremental processing mode.
See also 0ipSdEwma, the optimized and faster function of this function SD-EWMA algorithm is a
novel method for covariate shift-detection tests based on a two-stage structure for univariate time-
series. It works in an online mode and it uses an exponentially weighted moving average (EWMA)
model based control chart to detect the covariate shift-point in non-stationary time-series.

Usage

IpSdEwma(data, n.train, threshold = 0.01, 1 = 3, last.res = NULL)

Arguments

data

n.train

threshold

1
last

Numerical vector with training and test dataset.

Number of points of the dataset that correspond to the training set.

Error smoothing constant.

Control limit multiplier.

.res Last result returned by the algorithm.

IpSdEwma 39

Details

data must be a numerical vector without NA values. threshold must be a numeric value between
0 and 1. It is recommended to use low values such as 0.01 or 0.05. By default, 0.01 is used. 1
is the parameter that determines the control limits. By default, 3 is used. Finally last.res is the
last result returned by some previous execution of this algorithm. The first time the algorithm is
executed its value is NULL. However, to run a new batch of data without having to include it in the
old dataset and restart the process, the two parameters returned by the last run are only needed.

This algorithm can be used for both classical and incremental processing. It should be noted that
in case of having a finite dataset the CpSdEwma or OcpSdEwma algorithms are faster. Incremental
processing can be used in two ways. 1) Processing all available data and saving last.res for
future runs in which there is new data. 2) Using the stream library for when there is too much data
and it does not fit into memory. An example has been made for this use case.

Value

A list of the following items.
result dataset conformed by the following columns.

e is.anomaly 1 if the value is anomalous O otherwise.
* ucl Upper control limit.

¢ 1cl Lower control limit.

last.res Last result returned by the algorithm. Is a dataset containing the parameters
calculated in the last iteration and necessary for the next one.

References

Raza, H., Prasad, G., & Li, Y. (03 de 2015). EWMA model based shift-detection methods for
detecting covariate shifts in non-stationary environments. Pattern Recognition, 48(3), 659-669.

Examples

#f EXAMPLE 1: ——————mmmmmmmmmmmmme
It can be used in the same way as with CpSdEwma passing the whole dataset as
an argument.

Generate data

set.seed(100)

n <- 200

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[150] <- 170

df <- data.frame(timestamp = 1:n, value = x)

Calculate anomalies

result <- IpSdEwma(
data = df$value,
n.train = 5,

https://CRAN.R-project.org/package=stream

40

threshold = 0.01,
1=3
)
res <- cbind(df, result$result)

Plot results

PlotDetections(res, title = "SD-EWMA ANOMALY DETECTOR")

EXAMPLE 2: —-----------mmmmmoooo

You can use it in an incremental way. This is an example using the stream
library. This library allows the simulation of streaming operation.

install.packages("stream”)
library("stream")

Generate data

set.seed(100)

n <- 350

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[320] <- 170

df <- data.frame(timestamp = 1:n, value = x)

dsd_df <- DSD_Memory (df)

Initialize parameters for the loop
last.res <- NULL

res <- NULL

nread <- 100

numlter <- n%/%nread

Calculate anomalies
for(i in 1:numlter) {
read new data

newRow <- get_points(dsd_df, n = nread, outofpoints

calculate if it's an anomaly
last.res <- IpSdEwma(

data = newRow$value,

n.train = 5,

threshold = 0.01,

1=3,

last.res = last.res$last.res
)
prepare the result
if(lis.null(last.res$result)){

res <- rbind(res, cbind(newRow, last.res$result))

3
3

Plot results

PlotDetections(res, title = "SD-EWMA ANOMALY DETECTOR")

"ignore")

IpSdEwma

IpTsSdEwma 41

IpTsSdEwma Incremental Processing Two-Stage Shift-Detection based on EWMA

Description

IpTsSdEwma allows the calculation of anomalies using TSSD-EWMA in an incremental processing
mode. See also 0ipTsSdEwma, the optimized and faster function of this function. This algorithm
is a novel method for covariate shift-detection tests based on a two-stage structure for univariate
time-series. TSSD-EWMA works in two phases. In the first phase, it detects anomalies using the
SD-EWMA CpSdEwma algorithm. In the second phase, it checks the veracity of the anomalies using
the Kolmogorov-Simirnov test to reduce false alarms.

Usage

IpTsSdEwma(data, n.train, threshold, 1 = 3, m =5,
to.next.iteration = list(last.res = NULL, to.check = NULL, last.m =

NULL))
Arguments
data Numerical vector with training and test dataset.
n.train Number of points of the dataset that correspond to the training set.
threshold Error smoothing constant.
1 Control limit multiplier.
m Length of the subsequences for applying the Kolmogorov-Smirnov test.

to.next.iteration
list with the necessary parameters to execute in the next iteration

Details

data must be a numerical vector without NA values. threshold must be a numeric value between
0 and 1. It is recommended to use low values such as 0.01 or 0.05. By default, 0.01 is used. Finally,
1 is the parameter that determines the control limits. By default, 3 is used. m is the length of the
subsequences for applying the Kolmogorov-Smirnov test. By default, 5 is used. It should be noted
that the last m values have not been verified because you need other m values to be able to perform
the verification. Finally to.next.iteration is the last result returned by some previous execution
of this algorithm. The first time the algorithm is executed its value is NULL. However, to run a
new batch of data without having to include it in the old dataset and restart the process, the two
parameters returned by the last run are only needed.

Value

A list of the following items.

result Dataset conformed by the following columns:

42 IpTsSdEwma

e is.anomaly 1 if the value is anomalous 0 otherwise.
* ucl Upper control limit.
* 1cl Lower control limit.

e irow id or index

last.data.checked
Data frame with checked anomalies. i column is the id orindex and is.anomaly
is its new is.anomaly value.

to.next.iteration
Last result returned by the algorithm. It is a list containing the following items.

* last.res Last result returned by the aplicaction of SD-EWMA function with the calculations
of the parameters of the last run . These are necessary for the next run.

* to.check Subsequence of the last remaining unchecked values to be checked in the next
iterations.

* last.m Subsequence of the last m values.

References

Raza, H., Prasad, G., & Li, Y. (03 de 2015). EWMA model based shift-detection methods for
detecting covariate shifts in non-stationary environments. Pattern Recognition, 48(3), 659-669.

Examples

#f EXAMPLE 1: ———————mmmmmmmmmmmme
It can be used in the same way as with CpTsSdEwma passing the whole dataset
as an argument.

Generate data

set.seed(100)

n <- 200

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[150] <- 170

df <- data.frame(timestamp = 1:n, value = x)

Calculate anomalies

result <- IpTsSdEwma(
data = df$value,
n.train = 5,
threshold = 0.01,

1=3,
m = 20,
to.next.iteration = NULL

)

res <- cbind(df, result$result)

Plot results
PlotDetections(res, print.time.window = FALSE, title = "TSSD-EWMA ANOMALY DETECTOR")

IpTsSdEwma

EXAMPLE 2: —-——————mmmmmmom oo
You can use it in an incremental way. This is an example using the stream
library. This library allows the simulation of streaming operation.

install.packages("stream")
library("stream")

Generate data

set.seed(100)

n <- 500

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[320] <- 170

df <- data.frame(timestamp = 1:n, value = x)
dsd_df <- DSD_Memory (df)

Initialize parameters for the loop
last.res <- NULL

res <- NULL

nread <- 50

numlter <- n%/%nread

m <- 20

dsd_df <- DSD_Memory (df)

Calculate anomalies
for(i in 1:numlter) {
read new data
newRow <- get_points(dsd_df, n = nread, outofpoints = "ignore")
calculate if it's an anomaly
last.res <- IpTsSdEwma(
data = newRow$value,
n.train = 5,
threshold = 0.01,
1 =3,
m = 20,
to.next.iteration = last.res$to.next.iteration
)
prepare result
res <- rbind(res, cbind(newRow, last.res$result))
if (!is.null(last.res$last.data.checked)) {
res[res$i %in% last.res$last.data.checked$i, "is.anomaly"] <-
last.res$last.data.checked$is.anomaly

Plot results
PlotDetections(res, title = "TSSD-EWMA ANOMALY DETECTOR")

43

44 NormalizeScore

machine_temperature_system_failure
machine_temperature_system_failure.

Description

Temperature sensor data of an internal component of a large, industrial mahcine. The first anomaly
is a planned shutdown of the machine. The second anomaly is difficult to detect and directly led to
the third anomaly, a catastrophic failure of the machine.

Usage

machine_temperature_system_failure

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

NormalizeScore Normalize Score using Max and Min normalization

Description

ReduceAnomalies It reduces the number of detected anomalies. This function is designed to reduce
the number of false positives keeping only the first detection of all those that are close to each other.
This proximity distance is defined by a window

Usage

NormalizeScore(real.score, perfect.score, null.score)

Arguments

real.score Detector score. See GetDetectorScore.

perfect.score Perfect detector score; one that outputs all true positives and no false positives.
See GetNullAndPerfectScores.

null.score Perfect detector score; one that outputs all true positives and no false positives.
See GetNullAndPerfectScores.

Value

Normalized score.

https://github.com/numenta/NAB/blob/master/data/README.md

nyc_taxi 45

References

A. Lavin and S. Ahmad, “Evaluating Real-time Anomaly Detection Algorithms — the Numenta
Anomaly Benchmark,” in 14th International Conference on Machine Learning and Applications
(IEEE ICMLA’15), 2015.

Examples

Generate data

set.seed(100)

n <- 180

x <- sample(1:100, n, replace = TRUE)
x[70:90] <- sample(110:115, 21, replace
x[25] <- 200

x[150] <- 170

df <- data.frame(timestamp = 1:n, value

TRUE)

x)

Add is.real.anomaly column
df$is.real.anomaly <- @
df[c(25,80,150), "is.real.anomaly”] <- 1

Calculate anomalies

result <- CpSdEwma(
data = df$value,
n.train = 5,
threshold = 0.01,
1=3

)

res <- cbind(df, result)

Get null and perfect scores

np.scores <- GetNullAndPerfectScores(df)
np.standard <- np.scores[1,]

np.fp <- np.scores[2,]

np.fn <- np.scores[3,]

Get detector score
scores <- GetDetectorScore(res, print = FALSE, title = "")

Normalize standard score
NormalizeScore(scores$standard, np.standard$perfect.score, np.standard$null.score)

Normalize low_FP_rate score
NormalizeScore(scores$low_FP_rate, np.fp$perfect.score, np.fp$null.score)

Normalize low_FN_rate score
NormalizeScore(scores$low_FN_rate, np.fn$perfect.score, np.fn$null.score)

nyc_taxi nyc_taxi.

46 occupancy_t4013

Description

Number of NYC taxi passengers, where the five anomalies occur during the NYC marathon, Thanks-
giving, Christmas, New Years day, and a snow storm. The raw data is from the NYC Taxi and
Limousine Commission. The data file included here consists of aggregating the total number of taxi
passengers into 30 minute buckets.

Usage

nyc_taxi

Format

A data frame with three variables: timestamp, value, is.real.anomaly.
For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

occupancy_6005 occupancy_6005.

Description

Real time traffic data from the Twin Cities Metro area in Minnesota, collected by the Minnesota
Department of Transportation. Included metrics include occupancy, speed, and travel time from
specific sensors.

Usage
occupancy_6005

Format

A data frame with three variables: timestamp, value, is.real.anomaly.
For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

occupancy_t4013 occupancy_t4013.

Description

Real time traffic data from the Twin Cities Metro area in Minnesota, collected by the Minnesota
Department of Transportation. Included metrics include occupancy, speed, and travel time from
specific sensors.

Usage
occupancy_t4013

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

OcpPewma 47

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

OcpPewma Optimized Classic Processing Probabilistic-EWMA (PEWMA).

Description

OcpPewma calculates the anomalies of a dataset using an optimized version of classical processing
Probabilistic-EWMA algorithm. It Is an optimized implementation of the CpPewma algorithm using
environmental variables. It has been shown that in long datasets it can reduce runtime by up to 50%.
TThis algorithm is a probabilistic method of EWMA which dynamically adjusts the parameteriza-
tion based on the probability of the given observation. This method produces dynamic, data-driven
anomaly thresholds which are robust to abrupt transient changes, yet quickly adjust to long-term
distributional shifts.

Usage

OcpPewma(data, alpha® = 0.2, beta = @, n.train =5, 1 = 3)

Arguments
data Numerical vector with training and test datasets.
alphao Maximal weighting parameter.
beta Weight placed on the probability of the given observation.
n.train Number of points of the dataset that correspond to the training set.
1 Control limit multiplier.

Details

data must be a numerical vector without NA values. alpha® must be a numeric value where 0
< alpha@ < 1. If a faster adjustment to the initial shift is desirable, simply lowering alpha@ will
suffice. beta is the weight placed on the probability of the given observation. It must be a numeric
value where 0 <= beta <= 1. Note that if beta equals 0, PEWMA converges to a standard EWMA.
Finally 1 is the parameter that determines the control limits. By default, 3 is used.

Value
dataset conformed by the following columns:
is.anomaly 1 if the value is anomalous 0, otherwise.

ucl Upper control limit.

lcl Lower control limit.

https://github.com/numenta/NAB/blob/master/data/README.md

48 OcpSdEwma

References

M. Carter, Kevin y W. Streilein. Probabilistic reasoning for streaming anomaly detection. 2012
IEEE Statistical Signal Processing Workshop (SSP), pp. 377-380, Aug 2012.

Examples

Generate data

set.seed(100)

n <- 180

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[150] <- 170

df <- data.frame(timestamp = 1:n, value = x)

Calculate anomalies

result <- OcpPewma(
data = df$value,
n.train = 5,

alphao = 0.8,
beta = 0.1,
1 =3

)

Plot results
res <- cbind(df, result)
PlotDetections(res, title = "PEWMA ANOMALY DETECTOR")

OcpSdEwma Optimized Classic Processing Shift-Detection based on EWMA (SD-
EWMA).

Description

OcpSdEwma calculates the anomalies of a dataset using an optimized version of classical processing
based on the SD-EWMA algorithm. It is an optimized implementation of the CpSdEwma algorithm
using environment variables. It has been shown that in long datasets it can reduce runtime by up
to 50%. SD-EWMA algorithm is a novel method for covariate shift-detection tests based on a two-
stage structure for univariate time-series. It works in an online mode and it uses an exponentially
weighted moving average (EWMA) model based control chart to detect the covariate shift-point in
non-stationary time-series.

Usage

OcpSdEwma(data, n.train, threshold, 1 = 3)

OcpSdEwma 49

Arguments
data Numerical vector with training and test dataset.
n.train Number of points of the dataset that correspond to the training set.
threshold Error smoothing constant.
1 Control limit multiplier.
Details

data must be a numerical vector without NA values. threshold must be a numeric value between
0 and 1. It is recommended to use low values such as 0.01 or 0.05. By default, 0.01 is used. Finally,
1 is the parameter that determines the control limits. By default, 3 is used.

Value

dataset conformed by the following columns:

is.anomaly 1 if the value is anomalous 0, otherwise.
ucl Upper control limit.
lcl Lower control limit.

References

Raza, H., Prasad, G., & Li, Y. (03 de 2015). EWMA model based shift-detection methods for
detecting covariate shifts in non-stationary environments. Pattern Recognition, 48(3), 659-669.

Examples

Generate data

set.seed(100)

n <- 200

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[150] <- 170

df <- data.frame(timestamp = 1:n, value = x)

Calculate anomalies

result <- OcpSdEwma(
data = df$value,
n.train = 5,
threshold = 0.01,
1 =3

)

res <- cbind(df, result)

Plot results
PlotDetections(res, title = "SD-EWMA ANOMALY DETECTOR")

50 OcpTsSdEwma

OcpTsSdEwma Optimized Classic Processing Two-Stage Shift-Detection based on
EWMA

Description

OcpTsSdEwma calculates the anomalies of a dataset using an optimized verision of classical pro-
cessing based on the SD-EWMA algorithm. It is an optimized implementation of the CpTsSdEwma
algorithm using environment variables. It has been shown that in long datasets it can reduce runtime
by up to 50%. This algorithm is a novel method for covariate shift-detection tests based on a two-
stage structure for univariate time-series. This algorithm works in two phases. In the first phase,
it detects anomalies using the SD-EWMA CpSdEwma algorithm. In the second phase, it checks the
veracity of the anomalies using the Kolmogorov-Simirnov test to reduce false alarms.

Usage

OcpTsSdEwma(data, n.train, threshold, 1 = 3, m = 5)

Arguments
data Numerical vector with training and test dataset.
n.train Number of points of the dataset that correspond to the training set.
threshold Error smoothing constant.
1 Control limit multiplier.
m Length of the subsequences for applying the Kolmogorov-Smirnov test.
Details

data must be a numerical vector without NA values. threshold must be a numeric value between
0 and 1. It is recommended to use low values such as 0.01 or 0.05. By default, 0.01 is used. Finally,
1 is the parameter that determines the control limits. By default, 3 is used. m is the length of the
subsequences for applying the Kolmogorov-Smirnov test. By default, 5 is used. It should be noted
that the last m values will not been verified because another m values are needed to be able to perform
the verification.

Value

dataset conformed by the following columns:

is.anomaly 1 if the value is anomalous 0, otherwise.
ucl Upper control limit.
lcl Lower control limit.

References

Raza, H., Prasad, G., & Li, Y. (03 de 2015). EWMA model based shift-detection methods for
detecting covariate shifts in non-stationary environments. Pattern Recognition, 48(3), 659-669.

OipPewma 51

Examples

Generate data

set.seed(100)

n <- 180

x <- sample(1:100, n, replace = TRUE)
x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[150] <- 170

df <- data.frame(timestamp = 1:n, value

x)

Calculate anomalies
result <- OcpTsSdEwma(
data = df$value,
n.train = 5,
threshold = 0.01,
1 =3,
m = 20
)

res <- cbind(df, result)

Plot results
PlotDetections(res, title = "TSSD-EWMA ANOMALY DETECTOR")

OipPewma Optimized Incremental Processing Probabilistic-EWMA (PEWMA).

Description

OipPewma is the optimized implementation of the IpPewma function using environmental variables.
It has been shown that in long datasets it can reduce runtime by up to 50%. This function allows
the calculation of anomalies using PEWMA in an incremental processing mode. This algorithm is a
probabilistic method of EWMA which dynamically adjusts the parameterization based on the prob-
ability of the given observation. This method produces dynamic, data-driven anomaly thresholds
which are robust to abrupt transient changes, yet quickly adjust to long-term distributional shifts.

Usage

OipPewma(data, alpha@ = 0.2, beta = @, n.train =5, 1 = 3,
last.res = NULL)

Arguments
data Numerical vector with training and test dataset.
alpha@ Maximal weighting parameter.
beta Weight placed on the probability of the given observation.
n.train Number of points of the dataset that correspond to the training set.
1 Control limit multiplier.

last.res Last result returned by the algorithm.

52 OipPewma

Details

data must be a numerical vector without NA values. alpha® must be a numeric value where 0
< alpha@ < 1. If a faster adjustment to the initial shift is desirable, simply lowering alpha@ will
suffice. beta is the weight placed on the probability of the given observation. it must be a numeric
value where 0 <= beta <= 1. Note that beta equals 0, PEWMA converges to a standard EWMA.
Finally 1 is the parameter that determines the control limits. By default, 3 is used. last.res is the
last result returned by some previous execution of this algorithm. The first time the algorithm is
executed its value is NULL. However, to run a new batch of data without having to include it in the
old dataset and restart the process, the two parameters returned by the last run are only needed.

This algorithm can be used for both classical and incremental processing. It should be noted that in
case of having a finite dataset the CpPewma or OcpPewma algorithms are faster. Incremental process-
ing can be used in two ways. 1) Processing all available data and saving last.res for future runs
in which there is new data. 2) Using the stream library for when there is too much data and it does
not fit into the memory. An example has been made for this use case.

Value

A list of the following items.
result dataset conformed by the following columns.

e is.anomaly 1 if the value is anomalous 0, otherwise.
* ucl Upper control limit.

¢ 1cl Lower control limit.

last.res Last result returned by the algorithm. Is a dataset containing the parameters
calculated in the last iteration and necessary for the next one.

References

M. Carter, Kevin y W. Streilein. Probabilistic reasoning for streaming anomaly detection. 2012
IEEE Statistical Signal Processing Workshop (SSP), pp. 377-380, Aug 2012.

Examples

#f EXAMPLE 1: —=————mmmmmmmmmmmmme
It can be used in the same way as with OcpPewma passing the whole dataset as
an argument.

Generate data

set.seed(100)

n <- 180

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[150] <- 170

df <- data.frame(timestamp = 1:n, value = x)

Calculate anomalies

https://CRAN.R-project.org/package=stream

OipPewma

result <- OipPewma(
data = df$value,
alphao = 0.8,
beta = 0.1,
n.train = 5,
1 =3,
last.res = NULL

)

res <- cbind(df, result$result)

Plot results
PlotDetections(res, title = "PEWMA ANOMALY DETECTOR")

EXAMPLE 2: ————————mmmmmmm oo
You can use it in an incremental way. This is an example using the stream
library. This library allows the simulation of streaming operation.

install.packages("stream")
library("stream")

Generate data

set.seed(100)

n <- 500

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[320] <- 170

df <- data.frame(timestamp = 1:n, value = x)
dsd_df <- DSD_Memory (df)

Initialize parameters for the loop
last.res <- NULL

res <- NULL

nread <- 100

numlter <- n%/%nread

Calculate anomalies
for(i in T:numlIter) {
read new data
newRow <- get_points(dsd_df, n = nread, outofpoints = "ignore")
calculate if it's an anomaly
last.res <- OipPewma(
data = newRow$value,
n.train = 5,

alphao = 0.8,
beta = 0.1,
1 =3,

last.res = last.res$last.res
)
prepare the result
if(!is.null(last.res$result)){
res <- rbind(res, cbind(newRow, last.res$result))

3

54

OipSdEwma

}

Plot results
PlotDetections(res, print.time.window = FALSE, title = "PEWMA ANOMALY DETECTOR")

OipSdEwma Optimized Incremental Processing Shift-Detection based on EWMA
(SD-EWMA).

Description

OipSdEwma is the optimized implementation of the IpSdEwma function using environmental vari-
ables. This function allows the calculation of anomalies using SD-EWMA alogrithm in an incre-
mental processing mode. It has been shown that in long datasets it can reduce runtime by up to
50%. SD-EWMA algorithm is a novel method for covariate shift-detection tests based on a two-
stage structure for univariate time-series. It works in an online mode and it uses an exponentially
weighted moving average (EWMA) model based control chart to detect the covariate shift-point in
non-stationary time-series.

Usage

OipSdEwma(data, n.train, threshold, 1 = 3, last.res = NULL)

Arguments
data Numerical vector with training and test datasets.
n.train Number of points of the dataset that correspond to the training set.
threshold Error smoothing constant.
1 Control limit multiplier.
last.res Last result returned by the algorithm.
Details

data must be a numerical vector without NA values. threshold must be a numeric value between
0 and 1. It is recommended to use low values such as 0.01 or 0.05. By default, 0.01 is used. 1
is the parameter that determines the control limits. By default, 3 is used. Finally last.res is the
last result returned by some previous execution of this algorithm. The first time the algorithm is
executed its value is NULL. However, to run a new batch of data without having to include it in the
old dataset and restart the process, the two parameters returned by the last run are only needed.

This algorithm can be used for both classical and incremental processing. It should be noted that
in case of having a finite dataset the CpSdEwma or OcpSdEwma algorithms are faster. Incremental
processing can be used in two ways. 1) Processing all available data and saving last.res for
future runs in which there is new data. 2) Using the stream library for when there is too much data
and it does not fit into memory. An example has been made for this use case.

https://CRAN.R-project.org/package=stream

OipSdEwma 55

Value

A list of the following items.
result dataset conformed by the following columns.

e is.anomaly 1 if the value is anomalous 0, otherwise.
* ucl Upper control limit.

¢ 1cl Lower control limit.

last.res Last result returned by the algorithm. Is a dataset containing the parameters
calculated in the last iteration and necessary for the next one.

References

Raza, H., Prasad, G., & Li, Y. (03 de 2015). EWMA model based shift-detection methods for
detecting covariate shifts in non-stationary environments. Pattern Recognition, 48(3), 659-669.

Examples

EXAMPLE 1: —=————mmmmmmmmmmmmme
It can be used in the same way as with OcpSdEwma passing the whole dataset as
an argument.

Generate data

set.seed(100)

n <- 180

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[150] <- 170

df <- data.frame(timestamp = 1:n, value = x)

Calculate anomalies
result <- OipSdEwma(
data = df$value,
n.train = 5,
threshold = 0.01,
1=3
)
res <- cbind(df, result$result)

Plot results
PlotDetections(res, print.time.window = FALSE, title = "SD-EWMA ANOMALY DETECTOR")

EXAMPLE 2: -———--=--—=——-——-——-————
You can use it in an incremental way. This is an example using the stream
library. This library allows the simulation of streaming operation.

install.packages("stream”)
library("stream")

56 OipTsSdEwma

Generate data

set.seed(100)

n <- 500

X <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[320] <- 170

df <- data.frame(timestamp = 1:n, value
dsd_df <- DSD_Memory (df)

x)

Initialize parameters for the loop
last.res <- NULL

res <- NULL

nread <- 100

numIter <- n%/%nread

Calculate anomalies
for(i in T:numlIter) {
read new data
newRow <- get_points(dsd_df, n = nread, outofpoints = "ignore")
calculate if it's an anomaly
last.res <- QOipSdEwma(
data = newRow$value,
n.train = 5,
threshold = 0.01,
1=3,
last.res = last.res$last.res
)
prepare the result
if(lis.null(last.res$result)){
res <- rbind(res, cbind(newRow, last.res$result))
}
3

plot
PlotDetections(res, title = "SD-EWMA ANOMALY DETECTOR")

0ipTsSdEwma Optimized Incremental Processing Two-Stage Shift-Detection based
on EWMA

Description

OipTsSdEwma is the optimized implementation of the IpTsSdEwma function using environmental
variables. This function allows the calculation of anomalies using TSSD-EWMA in an incremental
processing mode. It has been shown that in long datasets it can reduce runtime by up to 50%. This
algorithm is a novel method for covariate shift-detection tests based on a two-stage structure for

OipTsSdEwma 57

univariate time-series. TSSD-EWMA works in two phases. In the first phase, it detects anoma-
lies using the SD-EWMA CpSdEwma algorithm. In the second phase, it checks the veracity of the
anomalies using the Kolmogorov-Simirnov test to reduce false alarms.

Usage

OipTsSdEwma(data, n.train, threshold, 1 =3, m =5,
to.next.iteration = list(last.res = NULL, to.check = NULL, last.m =

NULL))
Arguments
data Numerical vector with training and test dataset.
n.train Number of points of the dataset that correspond to the training set.
threshold Error smoothing constant.
1 Control limit multiplier.
m Length of the subsequences for applying the Kolmogorov-Smirnov test.

to.next.iteration
list with the necessary parameters to execute in the next iteration

Details

data must be a numerical vector without NA values. threshold must be a numeric value between
0 and 1. It is recommended to use low values such as 0.01 or 0.05. By default, 0.01 is used. Finally,
1 is the parameter that determines the control limits. By default, 3 is used. m is the length of the
subsequences for applying the Kolmogorov-Smirnov test. By default, 5 is used. It should be noted
that the last m values have not been verified because you need other m values to be able to perform
the verification. Finally to.next.iteration is the last result returned by some previous execution
of this algorithm. The first time the algorithm is executed its value is NULL. However, to run a
new batch of data without having to include it in the old dataset and restart the process, the two
parameters returned by the last run are only needed.

Value

A list of the following items.
result Dataset conformed by the following columns:

e is.anomaly 1 if the value is anomalous O otherwise.
* ucl Upper control limit.
¢ 1cl Lower control limit.
* i row id or index
last.data.checked
Data frame with checked anomalies. i column is the id orindex and is.anomaly
is its new is.anomaly value.

to.next.iteration
Last result returned by the algorithm. It is a list containing the following items.

58

OipTsSdEwma

* last.res Last result returned by the aplicaction of SD-EWMA function with the calculations
of the parameters of the last run . These are necessary for the next run.

* to.check Subsequence of the last remaining unchecked values to be checked in the next

iterations.

* last.m Subsequence of the last m values.

References

Raza, H., Prasad, G., & Li, Y. (03 de 2015).
detecting covariate shifts in non-stationary envi

Examples

EXAMPLE 1:
It can be used in the same way as with
as an argument.

Generate data

set.seed(100)

n <- 200

x <- sample(1:100, n, replace = TRUE)
x[70:90] <- sample(110:115, 21, replace
x[25] <- 200

x[150] <- 170

df <- data.frame(timestamp = 1:n, value

Calculate anomalies

result <- OipTsSdEwma(
data = df$value,
n.train = 5,
threshold = 0.01,

1 =3,
m = 20,
to.next.iteration = NULL

)
res <- cbind(df, result$result)

Plot results
PlotDetections(res, print.time.window = FA

EXAMPLE 2:
You can use it in an incremental way. T
library. This library allows the simula

install.packages("stream")
library("stream")

Generate data
set.seed(100)

n <- 500

x <- sample(1:100, n, replace

TRUE)

EWMA model based shift-detection methods for
ronments. Pattern Recognition, 48(3), 659-669.

OcpTsSdEwma passing the whole dataset

TRUE)

x)

LSE, title = "TSSD-EWMA ANOMALY DETECTOR")

his is an example using the stream
tion of streaming operation.

PlotDetections

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[320] <- 170

df <- data.frame(timestamp = 1:n, value
dsd_df <- DSD_Memory (df)

X)

Initialize parameters for the loop
last.res <- NULL

res <- NULL

nread <- 50

numlter <- n%/%nread

m <- 20

dsd_df <- DSD_Memory (df)

Calculate anomalies
for(i in 1:numlter) {
read new data
newRow <- get_points(dsd_df, n = nread, outofpoints = "ignore")
calculate if it's an anomaly
last.res <- QipTsSdEwma(
data = newRow$value,
n.train = 5,
threshold = 0.01,

1 =3,
m = 20,
to.next.iteration = last.res$to.next.iteration

)
prepare result
res <- rbind(res, cbind(newRow, last.res$result))
if (!is.null(last.res$last.data.checked)) {
res[res$i %in% last.res$last.data.checked$i, "is.anomaly"] <-
last.res$last.data.checked$is.anomaly
}
3

Plot results
PlotDetections(res, title = "TSSD-EWMA ANOMALY DETECTOR")

59

PlotDetections PLOT DETECTIONS

Description

PlotDetections shows in a graph the results obtained after the application of one of the anomaly

detectors included in this package.

Usage

PlotDetections(data, print.real.anomaly = FALSE,

60

PlotDetections

print.time.window = FALSE, title = "", xlab = "Time",
ylab = "Value", return.ggplot = FALSE)

Arguments

data

data.frame composed of at least one column called timestamp and another col-
umn called value. You can also include other columns such as is.anomaly,
is.real.anomaly, ucl, Icl, anomaly.score. Any of these columns except is.real.anomaly
that are included in the dataset will be shown in the graph automatically.

print.real.anomaly

If TRUE adds the real anomalies to the graph.

print.time.window

title

x1lab

ylab
return.ggplot

Details

If TRUE shows a time band centered on the real anomaly. According to the
article shown in the reference, if the detected anomaly remains within it would
be considered a true positive.

Title of the graph.

X Axis Name.

Y Axis Name.

If TRUE the function returns a ggplot object.

data must be a data.frame. The timestamp column can be numeric, of type POSIXIt, or a character
type date convertible to POSIXIt. The value column must be numeric. is.anomaly, is.real.anomaly,
ucl, 1cl, anomaly.score are some of the variables returned by the algorithms included in this
package and must be numeric or boolean in the case of columns is.anomaly, is.real.anomaly .

Value

plotly object.

References

A. Lavin and S. Ahmad, “Evaluating Real-time Anomaly Detection Algorithms — the Numenta
Anomaly Benchmark,” in 14th International Conference on Machine Learning and Applications
(IEEE ICMLA’15), 2015.

Examples

Generate data
set.seed(100)
n <- 180

x <- sample(1:100, n, replace = TRUE)
x[70:90] <- sample(110:115, 21, replace = TRUE)

x[25] <- 200
x[150] <- 170

df <- data.frame(timestamp = 1:n, value = x)

Calculate anomalies

rds_cpu_utilization_cc0c53 61

result <- CpSdEwma(
data = df$value,
n.train = 5,
threshold = 0.01,
1 =3

)

res <- cbind(df, result)

Plot results
PlotDetections(res, title = "KNN-CAD ANOMALY DETECTOR")

rds_cpu_utilization_cc@c53
rds_cpu_utilization_cc0c53.

Description

AWS server metrics as collected by the AmazonCloudwatch service. Example metrics include CPU
Utilization, Network Bytes In, and Disk Read Bytes..

Usage

rds_cpu_utilization_cc@c53

Format

A data frame with three variables: timestamp, value, is.real.anomaly.
For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

rds_cpu_utilization_e47b3b
rds_cpu_utilization_e47b3b.

Description
AWS server metrics as collected by the AmazonCloudwatch service. Example metrics include CPU
Utilization, Network Bytes In, and Disk Read Bytes..

Usage

rds_cpu_utilization_e47b3b

Format

A data frame with three variables: timestamp, value, is.real.anomaly.
For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

62 ReduceAnomalies

ReduceAnomalies Reduce Anomalies

Description

ReduceAnomalies It reduces the number of detected anomalies. This function is designed to reduce
the number of false positives keeping only the first detection of all those that are close to each other.
This proximity distance is defined by a window
Usage
ReduceAnomalies(data, windowLength, incremental = FALSE,
last.res = NULL)

Arguments

data Numerical vector with anomaly labels.

windowLength Window length.

incremental TRUE for incremental processing and FALSE for classic processing
last.res Last result returned by the algorithm.
Value

If incremental = FALSE, new Numerical vector with reduced anomaly labels. Else, a list of the
following items.

result New Numerical vector with reduced anomaly labels.

last.res Last result returned by the algorithm. It is a list with pointer, the index of the
last anomaly and index, the index number of the last point in the data

Examples

EXAMPLE 1: Classic Processing ----------------------

Generate data

set.seed(100)

n <- 350

x <- sample(1:100, n, replace = TRUE)
x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[320] <- 170

df <- data.frame(timestamp = 1:n, value

x)

Calculate anomalies

result <- IpSdEwma(
data = df$value,
n.train = 5,
threshold = 0.01,

ReduceAnomalies 63

1=2
)

res <- cbind(df, result$result)

Plot results
PlotDetections(res, title = "SD-EWMA ANOMALY DETECTOR")

Reduce anomalies
res$is.anomaly <- ReduceAnomalies(res$is.anomaly, windowLength = 5)

Plot results
PlotDetections(res, title = "SD-EWMA ANOMALY DETECTOR")

EXAMPLE 2: Incremental Processing -------------------———-

install.packages("stream"”)
library("stream")

Generate data

set.seed(100)

n <- 350

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[320] <- 170

df <- data.frame(timestamp = 1:n, value = x)
dsd_df <- DSD_Memory (df)

Initialize parameters for the loop
last.res <- NULL

red.res <- NULL

res <- NULL

nread <- 100

numIter <- ceiling(n/nread)

Calculate anomalies
for(i in 1:numlIter) {
read new data
newRow <- get_points(dsd_df, n = nread, outofpoints = "ignore")
calculate if it's an anomaly
last.res <- IpSdEwma(
data = newRow$value,
n.train = 5,
threshold = 0.01,
1 =2,
last.res = last.res$last.res

)

if(!is.null(last.res$result)){
reduce anomalies
red.res <- ReduceAnomalies(last.res$result$is.anomaly,

64 rogue_agent_key_updown

windowLength = 5, incremental = TRUE, last.res = red.res$last.res)
last.res$result$is.anomaly <- red.res$result

prepare the result
res <- rbind(res, cbind(newRow, last.res$result))
}
}

Plot results
PlotDetections(res, title = "SD-EWMA ANOMALY DETECTOR")

rogue_agent_key_hold rogue_agent_key_hold.

Description
Timing the key holds for several users of a computer, where the anomalies represent a change in the
user.

Usage
rogue_agent_key_hold

Format

A data frame with three variables: timestamp, value, is.real.anomaly.
For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

rogue_agent_key_updown
rogue_agent_key_updown.

Description
Timing the key strokes for several users of a computer, where the anomalies represent a change in
the user.

Usage

rogue_agent_key_updown

Format

A data frame with three variables: timestamp, value, is.real.anomaly.
For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

speed_6005 65

speed_6005 speed_6005.

Description

Real time traffic data from the Twin Cities Metro area in Minnesota, collected by the Minnesota
Department of Transportation. Included metrics include occupancy, speed, and travel time from
specific sensors.

Usage

speed_6005

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

speed_7578 speed_7578.

Description

Real time traffic data from the Twin Cities Metro area in Minnesota, collected by the Minnesota
Department of Transportation. Included metrics include occupancy, speed, and travel time from
specific sensors.

Usage

speed_7578

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

66 TravelTime_387

speed_t4013 speed_t4013.

Description

Real time traffic data from the Twin Cities Metro area in Minnesota, collected by the Minnesota
Department of Transportation. Included metrics include occupancy, speed, and travel time from
specific sensors.

Usage

speed_t4013

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

TravelTime_387 TravelTime_387.

Description

Real time traffic data from the Twin Cities Metro area in Minnesota, collected by the Minnesota
Department of Transportation. Included metrics include occupancy, speed, and travel time from
specific sensors.

Usage

TravelTime_387

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

TravelTime_451 67

TravelTime_451 TravelTime_451.

Description

Real time traffic data from the Twin Cities Metro area in Minnesota, collected by the Minnesota
Department of Transportation. Included metrics include occupancy, speed, and travel time from
specific sensors.

Usage

TravelTime_451

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

Twitter_volume_AAPL Twitter_volume_AAPL.

Description

A collection of Twitter mentions of large publicly-traded companies such as Google and IBM. The
metric value represents the number of mentions for a given ticker symbol every 5 minutes.

Usage

Twitter_volume_AAPL

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

68 Twitter_volume_CRM

Twitter_volume_AMZN Twitter_volume_AMZN.

Description

A collection of Twitter mentions of large publicly-traded companies such as Google and IBM. The
metric value represents the number of mentions for a given ticker symbol every 5 minutes.

Usage

Twitter_volume_AMZN

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

Twitter_volume_CRM Twitter_volume_CRM.

Description

A collection of Twitter mentions of large publicly-traded companies such as Google and IBM. The
metric value represents the number of mentions for a given ticker symbol every 5 minutes.

Usage

Twitter_volume_CRM

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

Twitter_volume_CVS 69

Twitter_volume_CVS Twitter_volume_CVS.

Description

A collection of Twitter mentions of large publicly-traded companies such as Google and IBM. The
metric value represents the number of mentions for a given ticker symbol every 5 minutes.

Usage

Twitter_volume_CVS

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

Twitter_volume_FB Twitter_volume_FB.

Description

A collection of Twitter mentions of large publicly-traded companies such as Google and IBM. The
metric value represents the number of mentions for a given ticker symbol every 5 minutes.

Usage

Twitter_volume_FB

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

70 Twitter_volume_IBM

Twitter_volume_GOOG Twitter_volume_GOOG.

Description

A collection of Twitter mentions of large publicly-traded companies such as Google and IBM. The
metric value represents the number of mentions for a given ticker symbol every 5 minutes.

Usage

Twitter_volume_GOOG

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

Twitter_volume_IBM Twitter_volume_IBM.

Description

A collection of Twitter mentions of large publicly-traded companies such as Google and IBM. The
metric value represents the number of mentions for a given ticker symbol every 5 minutes.

Usage

Twitter_volume_IBM

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

Twitter_volume_KO 71

Twitter_volume_KO Twitter_volume_KO.

Description

A collection of Twitter mentions of large publicly-traded companies such as Google and IBM. The
metric value represents the number of mentions for a given ticker symbol every 5 minutes.

Usage

Twitter_volume_KO

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README.md

Twitter_volume_PFE Twitter_volume_PFE.

Description

A collection of Twitter mentions of large publicly-traded companies such as Google and IBM. The
metric value represents the number of mentions for a given ticker symbol every 5 minutes.

Usage

Twitter_volume_PFE

Format

A data frame with three variables: timestamp, value, is.real.anomaly.

For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

https://github.com/numenta/NAB/blob/master/data/README.md
https://github.com/numenta/NAB/blob/master/data/README.md

72 Twitter_volume_UPS

Twitter_volume_UPS Twitter_volume_UPS.

Description
A collection of Twitter mentions of large publicly-traded companies such as Google and IBM. The
metric value represents the number of mentions for a given ticker symbol every 5 minutes.

Usage

Twitter_volume_UPS

Format

A data frame with three variables: timestamp, value, is.real.anomaly.
For further details, see https://github.com/numenta/NAB/blob/master/data/README . md

https://github.com/numenta/NAB/blob/master/data/README.md

Index

* datasets rds_cpu_utilization_cc@c53, 61

ambient_temperature_system_failure, rds_cpu_utilization_e47b3b, 61

3 rogue_agent_key_hold, 64
art_daily_flatmiddle, 4 rogue_agent_key_updown, 64
art_daily_jumpsdown, 4 speed_6005, 65
art_daily_jumpsup, 5 speed_7578, 65
art_daily_nojump, 5 speed_t4013, 66
art_increase_spike_density, 6 TravelTime_387, 66
art_load_balancer_spikes, 6 TravelTime_451, 67
cpu_utilization_asg_misconfiguration, Twitter_volume_AAPL, 67

14 Twitter_volume_AMZN, 68
ec2_cpu_utilization_24ae8d, 15 Twitter_volume_CRM, 68
ec2_cpu_utilization_53ea38, 15 Twitter_volume_CVS, 69
ec2_cpu_utilization_5f5533, 16 Twitter_volume_FB, 69
ec2_cpu_utilization_77clca, 16 Twitter_volume_GOOG, 70
ec2_cpu_utilization_825cc2, 17 Twitter_volume_IBM, 70

Twitter_volume_KO, 71
Twitter_volume_PFE, 71
Twitter_volume_UPS, 72

ec2_cpu_utilization_ac20cd, 17
ec2_cpu_utilization_fe7f93, 18
ec2_disk_write_bytes_Tlef3de, 18
ec2_disk_write_bytes_c0d644, 19
ec2_network_in_257a54, 19
ec2_network_in_5abac7, 20
ec2_request_latency_system_failure,
20
elb_request_count_8c0756, 21
exchange_2_cpc_results, 21
exchange_2_cpm_results, 22
exchange_3_cpc_results, 22

ambient_temperature_system_failure, 3
art_daily_flatmiddle, 4
art_daily_jumpsdown, 4
art_daily_jumpsup, 5
art_daily_nojump, 5
art_increase_spike_density, 6
art_load_balancer_spikes, 6

ContextualAnomalyDetector, 7

exchange_3_cpm_results, 23 CpKnnCad, 8, 33
exchange_4_cpc_results, 23 CpPewma, 10, 36, 47, 52
exchange_4_cpm_results, 24 CpSdEwma, 11, 13, 39, 41, 48, 50, 54, 57
grok_asg_anomaly, 31 CpTsSdEwma, 13, 50
iio_us_east1_i_a2eblcd9_NetworkIn, cpu_utilization_asg_misconfiguration,

32 14
machine_temperature_system_failure,

44 ec2_cpu_utilization_24ae8d, 15
nyc_taxi, 45 ec2_cpu_utilization_53ea38, 15
occupancy_6005, 46 ec2_cpu_utilization_5f5533, 16
occupancy_t4013, 46 ec2_cpu_utilization_77clca, 16

73

74

ec2_cpu_utilization_825cc2, 17
ec2_cpu_utilization_ac20cd, 17
ec2_cpu_utilization_fe7f93, 18
ec2_disk_write_bytes_lef3de, 18
ec2_disk_write_bytes_c0d644, 19
ec2_network_in_257a54, 19
ec2_network_in_5abac7, 20
ec2_request_latency_system_failure, 20
elb_request_count_8c0@756, 21
exchange_2_cpc_results, 21
exchange_2_cpm_results, 22
exchange_3_cpc_results, 22
exchange_3_cpm_results, 23
exchange_4_cpc_results, 23
exchange_4_cpm_results, 24

GetDetectorScore, 24, 44
GetLabels, 26
GetNullAndPerfectScores, 27, 44
GetNumTrainingValues, 28
GetWindowLength, 29, 30
GetWindowsLimits, 26, 30
grok_asg_anomaly, 31

iio_us_eastl1_i_a2eblcd9_NetworkIn, 32
IpKnnCad, 32

IpPewma, 35

IpSdEwma, 38

IpTsSdEwma, 41

machine_temperature_system_failure, 44

NormalizeScore, 44
nyc_taxi, 45

occupancy_6005, 46
occupancy_t4013, 46
OcpPewma, 10, 36,47, 52
OcpSdEwma, 11, 39, 48, 54
OcpTsSdEwma, 13, 50
OipPewma, 35, 51
OipSdEwma, 38, 54
OipTsSdEwma, 41, 56

PlotDetections, 59

rds_cpu_utilization_cc0c53, 61
rds_cpu_utilization_e47b3b, 61
ReduceAnomalies, 62
rogue_agent_key_hold, 64

rogue_agent_key_updown, 64

speed_6005, 65
speed_7578, 65
speed_t4013, 66

TravelTime_387, 66
TravelTime_451, 67
Twitter_volume_AAPL, 67
Twitter_volume_AMZN, 68
Twitter_volume_CRM, 68
Twitter_volume_CVS, 69
Twitter_volume_FB, 69
Twitter_volume_GOOG, 70
Twitter_volume_IBM, 70
Twitter_volume_KO, 71
Twitter_volume_PFE, 71
Twitter_volume_UPS, 72

INDEX

	ambient_temperature_system_failure
	art_daily_flatmiddle
	art_daily_jumpsdown
	art_daily_jumpsup
	art_daily_nojump
	art_increase_spike_density
	art_load_balancer_spikes
	ContextualAnomalyDetector
	CpKnnCad
	CpPewma
	CpSdEwma
	CpTsSdEwma
	cpu_utilization_asg_misconfiguration
	ec2_cpu_utilization_24ae8d
	ec2_cpu_utilization_53ea38
	ec2_cpu_utilization_5f5533
	ec2_cpu_utilization_77c1ca
	ec2_cpu_utilization_825cc2
	ec2_cpu_utilization_ac20cd
	ec2_cpu_utilization_fe7f93
	ec2_disk_write_bytes_1ef3de
	ec2_disk_write_bytes_c0d644
	ec2_network_in_257a54
	ec2_network_in_5abac7
	ec2_request_latency_system_failure
	elb_request_count_8c0756
	exchange_2_cpc_results
	exchange_2_cpm_results
	exchange_3_cpc_results
	exchange_3_cpm_results
	exchange_4_cpc_results
	exchange_4_cpm_results
	GetDetectorScore
	GetLabels
	GetNullAndPerfectScores
	GetNumTrainingValues
	GetWindowLength
	GetWindowsLimits
	grok_asg_anomaly
	iio_us_east1_i_a2eb1cd9_NetworkIn
	IpKnnCad
	IpPewma
	IpSdEwma
	IpTsSdEwma
	machine_temperature_system_failure
	NormalizeScore
	nyc_taxi
	occupancy_6005
	occupancy_t4013
	OcpPewma
	OcpSdEwma
	OcpTsSdEwma
	OipPewma
	OipSdEwma
	OipTsSdEwma
	PlotDetections
	rds_cpu_utilization_cc0c53
	rds_cpu_utilization_e47b3b
	ReduceAnomalies
	rogue_agent_key_hold
	rogue_agent_key_updown
	speed_6005
	speed_7578
	speed_t4013
	TravelTime_387
	TravelTime_451
	Twitter_volume_AAPL
	Twitter_volume_AMZN
	Twitter_volume_CRM
	Twitter_volume_CVS
	Twitter_volume_FB
	Twitter_volume_GOOG
	Twitter_volume_IBM
	Twitter_volume_KO
	Twitter_volume_PFE
	Twitter_volume_UPS
	Index

