
Package ‘sumExtras’
January 19, 2026

Title Extra Functions for 'gtsummary' Table Styling

Version 0.2.0

Description Provides additional convenience functions for 'gtsummary'
(Sjoberg et al. (2021) <doi:10.32614/RJ-2021-053>) & 'gt' tables,
including automatic variable labeling from dictionaries, standardized
missing value display, and consistent formatting helpers for streamlined
table styling workflows.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

Depends R (>= 4.1.0)

Suggests broom (>= 1.0.5), broom.helpers (>= 1.20.0), ggplot2, knitr,
labelled, quarto, scales, survey, testthat (>= 3.0.0), tibble

VignetteBuilder knitr

Config/testthat/edition 3

Imports dplyr, gt (>= 0.9.0), gtsummary (>= 1.7.0), purrr, rlang

URL https://github.com/kyleGrealis/sumExtras

BugReports https://github.com/kyleGrealis/sumExtras/issues

NeedsCompilation no

Author Kyle Grealis [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9223-8854>),

Raymond Balise [ctb] (ORCID: <https://orcid.org/0000-0002-9856-5901>)

Maintainer Kyle Grealis <kyleGrealis@proton.me>

Repository CRAN

Date/Publication 2026-01-19 18:20:07 UTC

1

https://doi.org/10.32614/RJ-2021-053
https://github.com/kyleGrealis/sumExtras
https://github.com/kyleGrealis/sumExtras/issues
https://orcid.org/0000-0002-9223-8854
https://orcid.org/0000-0002-9856-5901

2 add_auto_labels

Contents
add_auto_labels . 2
add_group_colors . 5
add_group_styling . 7
apply_labels_from_dictionary . 8
clean_table . 11
extras . 12
get_group_rows . 14
theme_gt_compact . 16
use_jama_theme . 17

Index 20

add_auto_labels Add automatic labels from dictionary to a gtsummary table

Description

Automatically apply variable labels from a dictionary or label attributes to tbl_summary, tbl_svysummary,
or tbl_regression objects. Intelligently preserves manual label overrides set in the original table
call while applying dictionary labels or reading label attributes from data. The dictionary can be
passed explicitly or will be searched for in the calling environment. If no dictionary is found, the
function will attempt to read label attributes from the underlying data.

Usage

add_auto_labels(tbl, dictionary)

Arguments

tbl A gtsummary table object created by tbl_summary(), tbl_svysummary(), or
tbl_regression().

dictionary A data frame or tibble with Variable and Description columns. If not pro-
vided (missing), the function will search for a dictionary object in the calling
environment. If no dictionary is found, the function will attempt to read label
attributes from the data. Set to NULL explicitly to skip dictionary search and only
use attributes.

Details

Label Priority Hierarchy:
The function applies labels according to this priority (highest to lowest):

1. Manual labels - Labels set via label = list(...) in tbl_summary() etc. are always pre-
served

2. Dictionary vs Attributes - Controlled by options(sumExtras.preferDictionary):
• If TRUE: Dictionary labels take precedence over attribute labels

add_auto_labels 3

• If FALSE (default): Attribute labels take precedence over dictionary labels
3. Default - If no label source is available, uses variable name

Dictionary Format:
The dictionary must be a data frame with columns:

• Variable: Character column with exact variable names from datasets
• Description: Character column with human-readable labels

Label Attributes:
The function reads label attributes from data using attr(data$var, "label"), following the
same label convention used by haven, Hmisc, and ggplot2 4.0+.
Your data may already have labels from various sources - imported from statistical software pack-
ages, set by other R packages, added manually, or from collaborative projects. This function
discovers and applies them seamlessly within gtsummary tables.
Because sumExtras uses native R’s attribute storage, labels work across any package that respects
the "label" attribute convention, including:

• ggplot2 4.0+ - automatic axis and legend labels
• gt - table label support
• Hmisc - label utilities and display functions

This approach requires zero package dependencies and is fully compatible with the labelled pack-
age if you choose to use it, but does not require it.

Implementation Note:
This function relies on internal gtsummary structures (tbl$call_list, tbl$inputs, tbl$table_body)
to detect manually set labels. While robust error handling is implemented, major updates to gt-
summary may require corresponding updates to sumExtras. Requires gtsummary >= 1.7.0.

Value

A gtsummary table object with labels applied. Manual labels set via label = list(...) in the
original table call are always preserved.

Options

Set options(sumExtras.preferDictionary = TRUE) to prioritize dictionary labels over label at-
tributes when both are available. Default is FALSE, which prioritizes attributes over dictionary
labels.

See Also

• apply_labels_from_dictionary() for setting label attributes on data for ggplot2/other pack-
ages

• gtsummary::modify_table_body() for advanced table customization

Other labeling functions: apply_labels_from_dictionary()

4 add_auto_labels

Examples

Create a dictionary
my_dict <- tibble::tribble(

~Variable, ~Description,
"age", "Age at Enrollment",
"trt", "Treatment Group",
"grade", "Tumor Grade"

)

Basic usage: pass dictionary explicitly
gtsummary::trial |>

gtsummary::tbl_summary(by = trt, include = c(age, grade)) |>
add_auto_labels(dictionary = my_dict)

Automatic dictionary search (dictionary in environment)
dictionary <- my_dict
gtsummary::trial |>

gtsummary::tbl_summary(by = trt, include = c(age, grade)) |>
add_auto_labels() # Finds dictionary automatically

Working with pre-labeled data (no dictionary needed)
labeled_data <- gtsummary::trial
attr(labeled_data$age, "label") <- "Patient Age (years)"
attr(labeled_data$marker, "label") <- "Marker Level (ng/mL)"

labeled_data |>
gtsummary::tbl_summary(include = c(age, marker)) |>
add_auto_labels() # Reads from label attributes

Manual overrides always win
gtsummary::trial |>

gtsummary::tbl_summary(
by = trt,
include = c(age, grade),
label = list(age ~ "Custom Age Label") # Manual override

) |>
add_auto_labels(dictionary = my_dict) # grade gets dict label, age keeps manual

Control priority with options
options(sumExtras.preferDictionary = TRUE) # Dictionary over attributes

Data has both dictionary and attributes
labeled_trial <- gtsummary::trial
attr(labeled_trial$age, "label") <- "Age from Attribute"
dictionary <- tibble::tribble(

~Variable, ~Description,
"age", "Age from Dictionary"

)

labeled_trial |>
gtsummary::tbl_summary(include = age) |>
add_auto_labels() # Uses "Age from Dictionary" (option = TRUE)

add_group_colors 5

add_group_colors Add background colors to group headers with automatic gt conversion

Description

Convenience function that adds background colors to variable group headers and converts the table
to gt. This is a terminal operation that combines get_group_rows(), gtsummary::as_gt(), and
gt::tab_style() into a single pipeable function.

For text formatting (bold/italic), use add_group_styling() before calling this function. This com-
posable design keeps each function focused on doing one thing well.

Usage

add_group_colors(tbl, color = "#E8E8E8")

Arguments

tbl A gtsummary table object with variable group headers created by gtsummary::add_variable_group_header()

color Background color for group headers. Default "#E8E8E8" (light gray). Can be
any valid CSS color (hex code, color name, rgb(), etc.).

Details

This function:

1. Identifies group header rows with get_group_rows()

2. Converts the table to gt with gtsummary::as_gt()

3. Applies background color using gt::tab_style()

Since this function converts to gt, it should be used as the final styling step in your pipeline. Apply
all gtsummary functions (like modify_caption(), modify_footnote(), etc.) and text formatting
with add_group_styling() before calling add_group_colors().

Value

A gt table object with colored group headers. Note: This is a terminal operation that converts to gt.
You cannot pipe to additional gtsummary functions after calling this function.

See Also

• add_group_styling() for text formatting only (stays gtsummary)

• get_group_rows() for identifying group header rows

• gtsummary::add_variable_group_header() for creating variable groups

• gt::tab_style() for additional gt-specific styling

6 add_group_colors

Examples

Basic usage - text formatting then color
gtsummary::trial |>

gtsummary::tbl_summary(by = trt) |>
extras() |>
gtsummary::add_variable_group_header(
header = "Patient Characteristics",
variables = age:stage

) |>
add_group_styling() |>
add_group_colors()

Custom color - light blue
gtsummary::trial |>

gtsummary::tbl_summary(by = trt) |>
extras() |>
gtsummary::add_variable_group_header(

header = "Baseline Characteristics",
variables = age:marker

) |>
add_group_styling() |>
add_group_colors(color = "#E3F2FD")

Bold only formatting with custom color
gtsummary::trial |>

gtsummary::tbl_summary(by = trt) |>
extras() |>
gtsummary::add_variable_group_header(

header = "Clinical Measures",
variables = marker:stage

) |>
add_group_styling(format = "bold") |>
add_group_colors(color = "#FFF9E6")

Multiple group headers
gtsummary::trial |>

gtsummary::tbl_summary(by = trt) |>
extras() |>
gtsummary::add_variable_group_header(

header = "Demographics",
variables = age

) |>
gtsummary::add_variable_group_header(

header = "Disease Measures",
variables = marker:response

) |>
add_group_styling() |>
add_group_colors(color = "#E8E8E8")

add_group_styling 7

add_group_styling Apply styling to variable group headers in gtsummary tables

Description

Adds customizable formatting to variable group headers in gtsummary tables. Variable groups are
created using gtsummary::add_variable_group_header() to organize variables into sections.
This function enhances table readability by making group headers visually distinct from individual
variable labels.

Usage

add_group_styling(tbl, format = c("bold", "italic"), indent_labels = 0L)

Arguments

tbl A gtsummary table object (e.g., from tbl_summary(), tbl_regression())

format Character vector specifying text formatting. Options include "bold", "italic",
or both. Default is c("bold", "italic").

indent_labels Integer specifying indentation level (in spaces) for variable labels under group
headers. Default is 0L (left-aligned). Set to 4L to preserve gtsummary’s default
group indentation, or use any non-negative integer for custom spacing.

Details

The function targets rows where row_type == 'variable_group' and applies the specified text
formatting to the label column. This is particularly useful for tables with multiple sections or
stratified analyses where clear visual hierarchy improves interpretation.

By default, variable labels are left-aligned (indent_labels = 0L) to distinguish them from cate-
gorical levels and statistics. Use indent_labels = 4L to preserve the default gtsummary behavior
where grouped variables are indented under their group headers.

Value

A gtsummary table object with specified formatting applied to variable group headers

See Also

• gtsummary::modify_table_styling() for general table styling options

• gtsummary::add_variable_group_header() for creating variable group headers

8 apply_labels_from_dictionary

Examples

Default formatting (bold and italic)
gtsummary::trial |>

gtsummary::tbl_summary(by = trt, include = c(age, marker, grade)) |>
gtsummary::add_variable_group_header(
header = "Patient Characteristics",
variables = age:grade

) |>
add_group_styling()

Bold only
gtsummary::trial |>

gtsummary::tbl_summary(by = trt, include = c(age, marker)) |>
gtsummary::add_variable_group_header(

header = "Demographics",
variables = age:marker

) |>
add_group_styling(format = "bold")

Multiple group headers
gtsummary::trial |>

gtsummary::tbl_summary(by = trt) |>
gtsummary::add_variable_group_header(

header = "Demographics",
variables = age

) |>
gtsummary::add_variable_group_header(

header = "Clinical Measures",
variables = marker:response

) |>
add_group_styling()

Custom indentation for grouped variables
gtsummary::trial |>

gtsummary::tbl_summary(by = trt, include = c(age, marker)) |>
gtsummary::add_variable_group_header(

header = "Patient Measures",
variables = age:marker

) |>
add_group_styling(indent_labels = 4L) # Variables indented under header

apply_labels_from_dictionary

Apply variable labels from dictionary to data as attributes

Description

Sets variable label attributes on data columns using a dictionary. This enables cross-package inte-
gration with tools that read label attributes, including ggplot2 4.0+ (automatic axis labels), gt (label

apply_labels_from_dictionary 9

support), and Hmisc. Labels are stored as the 'label' attribute on each column, following the
informal convention used across the R ecosystem.

This function is designed for workflows where you need labels to persist with your data for use in
plots, descriptive tables, or other visualizations beyond gtsummary tables.

Usage

apply_labels_from_dictionary(data, dictionary, overwrite = TRUE)

Arguments

data A data frame or tibble to add label attributes to

dictionary A data frame or tibble with Variable and Description columns matching the
format used by add_auto_labels()

overwrite Logical. If TRUE (default), overwrites existing label attributes. If FALSE, pre-
serves existing labels and only adds new ones.

Details

This function provides a bridge from sumExtras’ dictionary-based labeling system to the broader R
ecosystem. Key use cases:

• ggplot2 4.0+: Automatic axis and legend labels from attributes

• Cross-package workflows: One dictionary for tables (gtsummary) and plots (ggplot2)

• Documentation: Labels visible in RStudio data viewer

• Interoperability: Compatible with gt, Hmisc, and other label-aware packages

Only variables present in both the data and dictionary will receive label attributes. Dictionary entries
for non-existent variables are silently ignored.

Implementation: The R Ecosystem Label Convention:
This function uses native R’s attr() function to store labels in the "label" attribute, following
the same approach as haven, Hmisc, and ggplot2 4.0+. This standardized convention enables
seamless integration across the R ecosystem.
Because labels are stored as simple base R attributes (not in a special package-specific format),
they work transparently with any package that respects the "label" attribute:

• Dictionary-to-Attribute Bridge: Converts your dictionary’s Description column into stan-
dard R label attributes

• Zero Dependencies: Uses only base R, no special packages required
• Transparent & Simple: Users can inspect labels with attr(data$var, "label")

• Ecosystem Compatible: Works with ggplot2, gt, gtsummary, Hmisc, and beyond

The benefits of this approach are that labels remain portable with your data, work across multiple
R packages without version constraints, and integrate naturally with the broader R ecosystem’s
labeling conventions.

10 apply_labels_from_dictionary

Value

The input data with label attributes attached to matching columns. Original data is returned unmod-
ified except for added/updated attributes.

See Also

• add_auto_labels() for applying labels to gtsummary tables

• labelled::var_label() for an alternative way to set label attributes

• ggplot2::labs() for manual plot labeling

Other labeling functions: add_auto_labels()

Examples

Create a dictionary
my_dict <- tibble::tribble(

~Variable, ~Description,
"age", "Age at Enrollment (years)",
"marker", "Marker Level (ng/mL)",
"trt", "Treatment Group",
"grade", "Tumor Grade"

)

Apply labels to data
trial_labeled <- gtsummary::trial |>

apply_labels_from_dictionary(my_dict)

Now labels work automatically in gtsummary
trial_labeled |>

gtsummary::tbl_summary(by = trt, include = c(age, marker, grade))

And in ggplot2 4.0+ (automatic axis labels!)
if (requireNamespace("ggplot2", quietly = TRUE) &&

utils::packageVersion("ggplot2") >= "4.0.0") {
library(ggplot2)
trial_labeled |>

ggplot(aes(x = age, y = marker, color = factor(trt))) +
geom_point() # Axes and legend automatically labeled!

}

Check that labels were applied
attr(trial_labeled$age, "label") # "Age at Enrollment (years)"

Preserve existing labels
trial_partial <- gtsummary::trial
attr(trial_partial$age, "label") <- "Existing Age Label"

trial_partial |>
apply_labels_from_dictionary(my_dict, overwrite = FALSE)

attr(trial_partial$age, "label") # Still "Existing Age Label"
attr(trial_partial$marker, "label") # "Marker Level (ng/mL)" (was added)

clean_table 11

clean_table Standardize missing value display across all gtsummary table types

Description

Improves table readability by replacing various missing value representations with a consistent "–"
symbol. This makes it easier to distinguish between actual data and missing/undefined values in
summary tables, creating a cleaner and more professional appearance.

Works seamlessly with all gtsummary table types, including stacked tables (tbl_strata) and
survey-weighted summaries (tbl_svysummary). Automatically handles tables with or without the
standard var_type column.

Usage

clean_table(tbl)

Arguments

tbl A gtsummary table object (e.g., from tbl_summary(), tbl_svysummary(), tbl_regression(),
or tbl_strata())

Details

The function uses gtsummary::modify_table_body() to transform character columns and replace
common missing value patterns with "–":

• "0 (NA%)" - No events occurred and percentages cannot be calculated

• "NA (NA)" - Completely missing data for both count and percentage

• "0 (0%)" - Zero counts with zero percentage

• "0% (0.000)" - Zero percentage with decimal precision

• "NA (NA, NA)" - Missing data with confidence intervals

• "NA, NA" - Missing paired values (e.g., median and IQR)

This standardization makes tables more scannable and reduces visual clutter from various "empty"
data representations.

Note: The function checks for the presence of var_type column before applying modify_missing_symbol().
This allows it to work seamlessly with tbl_strata objects which use var_type_1, var_type_2,
etc. instead of var_type.

Value

A gtsummary table object with standardized missing value display

12 extras

See Also

• gtsummary::modify_table_body() for general table body modifications

• extras() which includes clean_table() in its styling pipeline

Examples

Basic usage - clean missing values in summary table
gtsummary::trial |>

gtsummary::tbl_summary(by = trt) |>
clean_table()

Often used as part of a styling pipeline
Create a test dictionary for add_auto_labels():
dictionary <- tibble::tribble(

~Variable, ~Description,
'age', 'Age at enrollment',
'stage', 'T Stage',
'grade', 'Grade',
'response', 'Tumor Response'

)
gtsummary::trial |>

gtsummary::tbl_summary(by = trt) |>
add_auto_labels() |>
extras() |>
clean_table()

Works with regression tables too
lm(age ~ trt + grade, data = gtsummary::trial) |>

gtsummary::tbl_regression() |>
clean_table()

extras Add standard styling and formatting to gtsummary tables

Description

Applies a consistent set of formatting options to gtsummary tables including overall column, bold
labels, clean headers, and optional p-values. Streamlines the common workflow of adding multiple
formatting functions. The function always succeeds by applying what works and warning about
unsupported features.

Usage

extras(tbl, pval = TRUE, overall = TRUE, last = FALSE, .args = NULL)

extras 13

Arguments

tbl A gtsummary table object (e.g., from tbl_summary(), tbl_regression())
pval Logical indicating whether to add p-values. Default is TRUE. When TRUE, uses

gtsummary’s default statistical tests (Kruskal-Wallis for continuous variables
with 3+ groups, chi-square for categorical variables).

overall Logical indicating whether to add overall column
last Logical indicating if Overall column should be last. Aligns with default from

gtsummary::add_overall().

.args Optional list of arguments to use instead of individual parameters. When pro-
vided, overrides pval, overall, and last arguments.

Details

The function applies the following modifications:

• Bolds variable labels for emphasis (all table types)

• Removes the "Characteristic" header label (all table types)

• Adds an "Overall" column (only stratified summary tables)

• Optionally adds p-values (only stratified summary tables)

• Applies clean_table() styling (all table types)

The function automatically detects whether the input table is stratified (has a by argument) and what
type of table it is (tbl_summary, tbl_regression, tbl_strata, etc.).

For tables that don’t support overall columns or p-values (non-stratified tables, regression tables,
or stacked tables), the function will issue a warning and continue by applying only the universally
supported features (bold_labels and modify_header). This ensures the function always succeeds
rather than failing midway through the pipeline.

If any individual formatting step fails (e.g., due to unexpected table structure), the function will
issue a warning and continue without that feature. This provides robustness while keeping you
informed of what was skipped.

Value

A gtsummary table object with standard formatting applied

Table Type Support

The function applies features based on table type and stratification:

• bold_labels() and modify_header(): Work on all table types
• add_overall(): Only works on stratified summary tables (tbl_summary with by)
• add_p(): Only works on stratified summary tables (tbl_summary with by)

Full feature support: tbl_summary and tbl_svysummary with by argument

Partial support (basic formatting only): tbl_regression, tbl_strata, and non-stratified tables. When
applied to these table types and overall/pval = TRUE, the function warns about unsupported features
but applies the formatting that works.

14 get_group_rows

See Also

• gtsummary::add_overall() for adding overall columns

• gtsummary::add_p() for adding p-values

• clean_table() for additional table styling

Examples

With p-values (default)
gtsummary::trial |>

gtsummary::tbl_summary(by = trt) |>
extras()

Using .args list
extra_args <- list(pval = TRUE, overall = TRUE, last = FALSE)
gtsummary::trial |>

gtsummary::tbl_summary(by = trt) |>
extras(.args = extra_args)

Without p-values
gtsummary::trial |>

gtsummary::tbl_summary(by = trt) |>
extras(pval = FALSE)

Chain with other functions
Create required dictionary first
dictionary <- tibble::tribble(

~Variable, ~Description,
'record_id', 'Participant ID',
'age', 'Age at enrollment',
'sex', 'Biological sex'

)
gtsummary::trial |>

gtsummary::tbl_summary(by = trt) |>
add_auto_labels() |>
extras(pval = TRUE) |>
add_group_styling()

get_group_rows Get row numbers of variable group headers for gt styling

Description

Extracts the row indices of variable group headers from a gtsummary table. This is useful for
applying background colors or other gt-specific styling after converting a gtsummary table to gt
with as_gt().

get_group_rows 15

Usage

get_group_rows(tbl)

Arguments

tbl A gtsummary table object with variable group headers created by gtsummary::add_variable_group_header()

Details

Variable group headers are identified by row_type == 'variable_group' in the table body. The
returned row numbers can be used with gt::tab_style() to apply styling like background colors
after converting to a gt table.

This function should be called BEFORE converting the table with as_gt(), as the row type infor-
mation is only available in gtsummary table objects.

Value

An integer vector of row numbers where variable_group headers are located

See Also

• add_group_styling() for applying text formatting to group headers

• gtsummary::add_variable_group_header() for creating variable groups

• gt::tab_style() for applying gt-specific styling

Examples

Create table with variable groups
my_tbl <- gtsummary::trial |>

gtsummary::tbl_summary(by = trt, include = c(age, marker, grade, stage)) |>
gtsummary::add_variable_group_header(
header = "Demographics",
variables = age

) |>
gtsummary::add_variable_group_header(

header = "Clinical",
variables = marker:stage

) |>
add_group_styling()

Get group row numbers before conversion
group_rows <- get_group_rows(my_tbl)

Convert to gt and apply gray background
my_tbl |>

gtsummary::as_gt() |>
gt::tab_style(

style = gt::cell_fill(color = "#E8E8E8"),
locations = gt::cells_body(rows = group_rows)

)

16 theme_gt_compact

theme_gt_compact Apply compact JAMA-style theme to gt tables

Description

Applies a compact table theme to gt tables that matches the ’jama’ theme from gtsummary. This en-
sures visual consistency when mixing gtsummary tables (using theme_gtsummary_compact("jama"))
with regular gt tables in the same document. The theme reduces padding, adjusts font sizes, and
applies JAMA journal styling conventions.

Usage

theme_gt_compact(tbl)

Arguments

tbl A gt table object created with gt::gt()

Details

This function replicates the visual appearance of gtsummary::theme_gtsummary_compact("jama")
for use with regular gt tables. Key styling includes:

• Reduced font size (13px) for compact appearance

• Minimal padding (1px) on all row types

• Bold column headers and table titles

• Hidden top and bottom table borders

• Consistent spacing that matches JAMA journal standards

Value

A gt table object with compact JAMA-style formatting applied

See Also

• gtsummary::theme_gtsummary_compact() for gtsummary table themes

• gtsummary::set_gtsummary_theme() for setting global gtsummary themes

• gt::tab_options() for additional gt table styling options

use_jama_theme 17

Examples

Basic usage with a data frame
mtcars |>

head() |>
gt::gt() |>
theme_gt_compact()

Combine with other gt functions
mtcars |>

head() |>
gt::gt() |>
gt::tab_header(title = "Vehicle Data") |>
theme_gt_compact()

Use alongside gtsummary tables for consistency
Set gtsummary theme first
gtsummary::set_gtsummary_theme(gtsummary::theme_gtsummary_compact("jama"))

Then both tables will have matching appearance
summary_table <- gtsummary::trial |>

gtsummary::tbl_summary()

data_table <- gtsummary::trial |>
head() |>
gt::gt() |>
theme_gt_compact()

use_jama_theme Apply JAMA Compact Theme to gtsummary Tables

Description

Sets the global gtsummary theme to the JAMA (Journal of the American Medical Association)
compact style. This is the recommended theme for use with sumExtras functions, providing profes-
sional medical journal formatting with reduced padding and consistent styling. The theme remains
active for the entire R session or until changed with another theme.

Usage

use_jama_theme()

Details

The JAMA compact theme implements formatting standards used by the Journal of the American
Medical Association, making it ideal for:

• Medical research manuscripts and reports

• Clinical trial summaries

18 use_jama_theme

• Academic publications requiring AMA style

• Professional presentations with clean, compact tables

Key formatting features include:

• Reduced font size (13px) for compact appearance

• Minimal cell padding (1px) to maximize information density

• Bold column headers and variable labels

• Clean borders following JAMA style guidelines

• Consistent alignment and spacing

The function checks for the gtsummary package and will stop with an informative error if it is not
installed. The theme is applied globally and will affect all gtsummary tables created after calling
this function, including tbl_summary(), tbl_regression(), tbl_cross(), tbl_strata(), and
related functions.

For visual consistency with regular gt tables, use theme_gt_compact() which replicates the same
styling for non-gtsummary tables.

Value

Invisibly returns the theme list object from gtsummary::theme_gtsummary_compact("jama").
The theme is applied globally via gtsummary::set_gtsummary_theme(), affecting all subsequent
gtsummary tables created in the session. A message is printed confirming the theme application.

See Also

• theme_gt_compact for applying JAMA-style formatting to regular gt tables

• extras for standard sumExtras table formatting

• gtsummary::theme_gtsummary_compact() for other compact theme options

• gtsummary::set_gtsummary_theme() for setting custom themes

• gtsummary::reset_gtsummary_theme() for resetting to default theme

Examples

Apply theme at the start of your analysis
use_jama_theme()

All subsequent gtsummary tables will use JAMA formatting
gtsummary::trial |>

gtsummary::tbl_summary(by = trt)

Works with all gtsummary table types
lm(age ~ trt + grade, data = gtsummary::trial) |>

gtsummary::tbl_regression()

Combine with sumExtras styling functions
use_jama_theme()
gtsummary::trial |>

use_jama_theme 19

gtsummary::tbl_summary(by = trt, include = c(age, marker, stage)) |>
extras() |>
add_group_styling()

Reset to default theme if needed
gtsummary::reset_gtsummary_theme()

Index

∗ labeling functions
add_auto_labels, 2
apply_labels_from_dictionary, 8

∗ theme functions
use_jama_theme, 17

add_auto_labels, 2, 10
add_group_colors, 5
add_group_styling, 7
apply_labels_from_dictionary, 3, 8

clean_table, 11

extras, 12, 18

get_group_rows, 14

theme_gt_compact, 16, 18

use_jama_theme, 17

20

	add_auto_labels
	add_group_colors
	add_group_styling
	apply_labels_from_dictionary
	clean_table
	extras
	get_group_rows
	theme_gt_compact
	use_jama_theme
	Index

