tidylearn: A Unified Tidy Interface to R's Machine Learning Ecosystem

Provides a unified tidyverse-compatible interface to R's machine learning packages. Wraps established implementations from 'glmnet', 'randomForest', 'xgboost', 'e1071', 'rpart', 'gbm', 'nnet', 'cluster', 'dbscan', and others - providing consistent function signatures, tidy tibble output, and unified 'ggplot2'-based visualization. The underlying algorithms are unchanged; 'tidylearn' simply makes them easier to use together. Access raw model objects via the $fit slot for package-specific functionality. Methods include random forests Breiman (2001) <doi:10.1023/A:1010933404324>, LASSO regression Tibshirani (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x>, elastic net Zou and Hastie (2005) <doi:10.1111/j.1467-9868.2005.00503.x>, support vector machines Cortes and Vapnik (1995) <doi:10.1007/BF00994018>, and gradient boosting Friedman (2001) <doi:10.1214/aos/1013203451>.

Version: 0.1.0
Depends: R (≥ 3.6.0)
Imports: dplyr (≥ 1.0.0), ggplot2 (≥ 3.3.0), tibble (≥ 3.0.0), tidyr (≥ 1.0.0), purrr (≥ 0.3.0), rlang (≥ 0.4.0), magrittr, stats, e1071, gbm, glmnet, nnet, randomForest, rpart, rsample, ROCR, yardstick, cluster (≥ 2.1.0), dbscan (≥ 1.1.0), MASS, smacof (≥ 2.1.0)
Suggests: arules, arulesViz, car, caret, DT, GGally, ggforce, gridExtra, keras, knitr, lmtest, mclust, moments, NeuralNetTools, onnx, parsnip, recipes, reticulate, rmarkdown, rpart.plot, scales, shiny, shinydashboard, tensorflow, testthat (≥ 3.0.0), workflows, xgboost
Published: 2026-02-06
DOI: 10.32614/CRAN.package.tidylearn (may not be active yet)
Author: Cesaire Tobias [aut, cre]
Maintainer: Cesaire Tobias <cesaire at sheetsolved.com>
BugReports: https://github.com/ces0491/tidylearn/issues
License: MIT + file LICENSE
URL: https://github.com/ces0491/tidylearn
NeedsCompilation: no
Citation: tidylearn citation info
Materials: README, NEWS
CRAN checks: tidylearn results

Documentation:

Reference manual: tidylearn.html , tidylearn.pdf
Vignettes: Automated Machine Learning with tidylearn (source, R code)
Getting Started with tidylearn (source, R code)
Integration Workflows: Combining Supervised and Unsupervised Learning (source, R code)
Supervised Learning with tidylearn (source, R code)
Unsupervised Learning with tidylearn (source, R code)

Downloads:

Package source: tidylearn_0.1.0.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=tidylearn to link to this page.