
Package ‘unityForest’
January 30, 2026

Type Package

Title Improving Interaction Modelling and Interpretability in Random
Forests

Version 0.1.0

Date 2026-01-26

Maintainer Roman Hornung <hornung@ibe.med.uni-muenchen.de>

Description Implementation of the unity forest (UFO) framework (Hornung & Hapfelmeier, 2026,
<doi:10.48550/arXiv.2601.07003>).
UFOs are a random forest variant designed to better take covariates with purely
interaction-based effects into account, including interactions for which none of the involved
covariates exhibits a marginal effect.
While this framework tends to improve discrimination and predictive accuracy compared
to standard random forests, it also facilitates the identification and interpretation of
(marginal or interactive) effects: In addition to the UFO algorithm for tree construction,
the package includes the unity variable importance measure (unity VIM), which quantifies
covariate effects under the conditions in which they are strongest - either marginally
or within subgroups defined by interactions - as well as covariate-representative tree
roots (CRTRs) that provide interpretable visualizations of these conditions.
Currently, only classification is supported.
This package is a fork of the R package 'ranger' (main author: Marvin N. Wright), which
implements random forests using an efficient C++ backend.

SystemRequirements C++17

Encoding UTF-8

License GPL-3

Imports Rcpp (>= 0.11.2), Matrix, ggplot2, ggrepel, dplyr, scales,
rlang

LinkingTo Rcpp, RcppEigen

Depends R (>= 3.5)

Suggests patchwork

RoxygenNote 7.3.3

NeedsCompilation yes

1

https://doi.org/10.48550/arXiv.2601.07003

2 unityForest-package

Author Roman Hornung [aut, cre],
Marvin N. Wright [ctb, cph]

Repository CRAN

Date/Publication 2026-01-30 11:00:09 UTC

Contents
unityForest-package . 2
predict.unityfor . 3
reprTrees . 4
unityfor . 9
wine . 14

Index 16

unityForest-package Unity Forest (UFO) Framework

Description

This package implements the unity forest (UFO) framework. UFOs are a random forest variant de-
signed to better take covariates with purely interaction-based effects into account, including inter-
actions for which none of the involved covariates exhibits a marginal effect. While this framework
tends to improve discrimination and predictive accuracy compared to standard random forests, it
also facilitates the identification and interpretation of (marginal or interactive) effects: In addition
to the UFO algorithm for tree construction, the package includes the unity variable importance mea-
sure (unity VIM), which quantifies covariate effects under the conditions in which they are strongest
- either marginally or within subgroups defined by interactions - as well as covariate-representative
tree roots (CRTRs) that provide interpretable visualizations of these conditions. Currently, only
classification is supported.

Details

The main functions of the package are:

• unityfor: Construct a UFO and compute the unity VIM.

• predict.unityfor: Predict using a UFO fitted using unityfor.

• reprTrees: Select and visualize covariate-representative tree roots (CRTRs) based on a unityfor
object.

This package is a fork of the R package ’ranger’ that implements random forests using an efficient
C++ implementation. The documentation is partly taken from ’ranger’, where some parts of the
documentation may not apply to (the current version of) the ’unityForest’ package.

The code in the example sections can be used as a template for basic application scenarios.

predict.unityfor 3

References

• Hornung, R., Hapfelmeier, A. (2026). Unity Forests: Improving Interaction Modelling and
Interpretability in Random Forests. arXiv:2601.07003, <doi:10.48550/arXiv.2601.07003>.

• Wright, M. N., Ziegler, A. (2017). ranger: A fast implementation of random forests for
high dimensional data in C++ and R. Journal of Statistical Software 77:1-17, <doi:10.18637/
jss.v077.i01>.

• Breiman, L. (2001). Random forests. Machine Learning 45:5-32, <doi:10.1023/A:1010933404324>.
• Malley, J. D., Kruppa, J., Dasgupta, A., Malley, K. G., & Ziegler, A. (2012). Probability

machines: consistent probability estimation using nonparametric learning machines. Methods
of Information in Medicine 51:74-81, <doi:10.3414/ME00010052>.

predict.unityfor Unity Forest prediction

Description

Prediction with new data and a saved forest from unityfor.

Usage

S3 method for class 'unityfor'
predict(
object,
data = NULL,
predict.all = FALSE,
num.trees = object$num.trees,
type = "response",
num.threads = NULL,
verbose = TRUE,
...

)

Arguments

object unityfor object.
data New test data of class data.frame.
predict.all Return individual predictions for each tree instead of aggregated predictions for

all trees. Return a matrix (sample x tree) for classification and a 3d array for
probability estimation (sample x class x tree).

num.trees Number of trees used for prediction. The first num.trees in the forest are used.
type Type of prediction. One of ’response’, ’se’, ’terminalNodes’, ’quantiles’ with

default ’response’. See below for details.
num.threads Number of threads. Default is number of CPUs available.
verbose Verbose output on or off.
... further arguments passed to or from other methods.

https://doi.org/10.48550/arXiv.2601.07003
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.3414/ME00-01-0052

4 reprTrees

Details

This package is a fork of the R package ’ranger’ that implements random forests using an efficient
C++ implementation. More precisely, ’unityForest’ was written by modifying the code of ’ranger’,
version 0.11.0.

Value

Object of class unityfor.prediction with elements

predictions Predicted classes/probabilities/values (only for classification and regression)
num.trees Number of trees.
num.independent.variables Number of independent variables.
treetype Type of forest/tree. Classification or regression (the latter is not implemented yet).
num.samples Number of samples.

Author(s)

Marvin N. Wright

References

• Hornung, R., Hapfelmeier, A. (2026). Unity Forests: Improving Interaction Modelling and
Interpretability in Random Forests. arXiv:2601.07003, <doi:10.48550/arXiv.2601.07003>.

• Wright, M. N., Ziegler, A. (2017). ranger: A fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical Software 77:1-17, <doi:10.18637/
jss.v077.i01>.

See Also

unityfor

reprTrees Select and visualize covariate-representative tree roots (CRTRs)

Description

Implements the algorithm for selecting and visualizing covariate-representative tree roots (CRTRs)
as described in Hornung & Hapfelmeier (2026).
CRTRs are tree roots extracted from a unity forest that characterize the conditions under which a
given variable exhibits its strongest effect on the outcome. The function selects one representative
tree root for each variable and visualizes its structure to facilitate interpretation. CRTRs are essential
for analyzing the effects identified by the unity VIM (unityfor). See the ’Details’ section below
for more details.

https://doi.org/10.48550/arXiv.2601.07003
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01

reprTrees 5

Usage

reprTrees(
object,
vars = NULL,
numvars = 5,
indvars = NULL,
num.threads = NULL,
plotit = TRUE,
highlight_relevant = TRUE,
box_plots = TRUE,
density_plots = TRUE,
add_split_line = TRUE,
verbose = TRUE

)

Arguments

object Object of class unityfor.

vars This is an optional vector of variable names, for which CRTRs should be ob-
tained

numvars The number of the variables with the largest unity VIM values for which CRTRs
should be obtained.

indvars The indices of the variables with the largest unity VIM values for which CRTRs
should be obtained. For example, if indvars = c(1, 3), the CRTRs for the
variables with the largest and third-largest unity VIM values are obtained.

num.threads Number of threads. Default is number of CPUs available.

plotit Whether or not the CRTRs should be plotted or merely returned (invisibly).
Default is TRUE.

highlight_relevant

Whether or not the nodes not containing the top-scoring splits for the variables
of interest or their ancestor nodes should be shaded out. Default is TRUE. See the
’Details’ section below for explanation.

box_plots Whether boxplots should be used to show the outcome class-specific distribu-
tions of the variables values in the nodes with top-scoring splits (see ’Details’
section for explanation). For classification only. Default is TRUE.

density_plots Whether kernel density plots should be used to show the outcome class-specific
distributions of the variable values in the nodes with top-scoring splits (see ’De-
tails’ section for explanation). For classification only. Default is TRUE.

add_split_line Whether in the boxplots and/or density plots a line at the split point of the cor-
responding node should be drawn. Default is TRUE.

verbose Verbose output on or off. Default is TRUE.

Details

Further details on the descriptions below are provided in Hornung & Hapfelmeier (2026).

6 reprTrees

Covariate-representative tree roots (CRTRs). Covariate-representative tree roots (CRTRs) (Hor-
nung & Hapfelmeier, 2026) are tree fragments (or ’tree roots’ - the first few splits in the trees)
extracted from a fitted unity forest (unityfor) that characterize for given variables the conditions
under which each variable exerts its strongest influence on the prediction.

Technically, for a given variable, the algorithm identifies tree roots in which this variable attains
particularly high split scores (top-scoring splits). From these tree roots, a representative root is
extracted (Laabs et al., 2024) that best reflects the conditions under which this variable has its
strongest effect.

Interpretation and subgroup effects. If a variable has a strong marginal effect, the corresponding
CRTR typically contains a split on this variable at the root node (first split in the tree). In contrast,
if a variable has little marginal effect but interacts with another variable, the CRTR may first split
on that other variable, thereby defining a subgroup in which the variable of interest exhibits a strong
conditional effect.

From a substantive perspective, CRTRs enable the exploration of variable effects that are generally
not detectable by conventional methods focusing on marginal associations. In particular, CRTRs
can reveal variables that have weak marginal effects but act strongly within specific subgroups
defined by interactions with other variables.

Relation to unity VIM. CRTRs are closely related to the unity variable importance measure (unity
VIM) (unityfor). The unity VIM quantifies the strength of variable effects under the conditions
in which they are strongest. Analogously, CRTRs visualize these conditions by displaying the tree
structures that give rise to the respective unity VIM values.

Accordingly, the CRTR algorithm can be used to visualize and interpret the effects identified by the
unity VIM. By default, CRTRs are constructed and visualized for the five variables with the largest
unity VIM values.

Scope of applicability. CRTRs should primarily be examined for variables with sufficiently large
unity VIM values. Constructing CRTRs for variables with negligible importance may lead to over-
interpretation, as apparent patterns may reflect random structure rather than meaningful effects.

Shaded regions in the visualization. For improved interpretability, parts of the CRTRs are shaded
out by default. Specifically, only the nodes containing the top-scoring splits for the variable of
interest and their ancestor nodes are shown prominently.

This design is motivated by two considerations. First, the purpose of CRTRs is to depict the con-
ditions under which a variable exhibits its strongest effects - conditions that are defined by the
ancestors of the nodes with top-scoring splits. Second, the remaining regions of the tree are of
limited interpretive value. Since each CRTR is derived from tree roots selected for strong effects of
a specific variable, the splitting patterns along the highlighted paths are specific for that variable. In
contrast, shaded regions reflect arbitrary aspects of the overall association structure in the data and
may include splits on non-informative variables, as each tree root is grown from a (small) random
subset of all available variables.

Note that additional splits on the variable of interest may occur within shaded regions and can still
be relevant. However, these splits do not represent the conditions under which the variable attains
its strongest effects.

In-bag data for top-scoring split visualizations. The boxplots and density plots illustrating the
discriminatory power of the top-scoring splits are computed exclusively based on the in-bag ob-
servations of the corresponding trees. This is consistent with the construction of the CRTRs them-
selves, which are derived from in-bag data only.

reprTrees 7

Value

Object of class unityfor.reprTrees with elements

rules List. Ing-bag statistics on the outcome at each node in the CRTRs. For clas-
sification, this provides the class frequencies and the numbers of observations
representing each class.

plots List. Generated ggplot2 plots.

var.names Labels of the variables for which CRTRs were selected.

var.names.all Names of all independent variables in the dataset.
num.independent.variables

Number of independent variables in the dataset.

num.samples Number of observations in the dataset.

treetype Tree type.

forest Sub-forest that contains only the CRTRs.

Author(s)

Roman Hornung

References

• Hornung, R., Hapfelmeier, A. (2026). Unity Forests: Improving Interaction Modelling and
Interpretability in Random Forests. arXiv:2601.07003, <doi:10.48550/arXiv.2601.07003>.

• Laabs, B.-H., Westenberger, A., & K\"onig, I. R. (2024). Identification of representative trees
in random forests based on a new tree-based distance measure. Advances in Data Analysis
and Classification 18(2):363-380, <doi:10.1007/s11634023005377>.

See Also

unityfor

Examples

Load package:

library("unityForest")

Set seed to make results reproducible:

set.seed(1234)

Load wine dataset:

data(wine)

https://doi.org/10.48550/arXiv.2601.07003
https://doi.org/10.1007/s11634-023-00537-7

8 reprTrees

Construct unity forest and calculate unity VIM values:

model <- unityfor(dependent.variable.name = "C", data = wine,
importance = "unity", num.trees = 2000)

NOTE: num.trees = 2000 (in the above) would be too small for practical
purposes. This quite small number of trees was simply used to keep the
runtime of the example short.
The default number of trees is num.trees = 20000.

Visualize the CRTRs for the five variables with the largest unity VIM
values:

reprTrees(model, box_plots = FALSE, density_plots = FALSE)

Visualize the CRTRs for the variables with the largest and third-largest
unity VIM values:

reprTrees(model, indvars = c(2, 3), box_plots = FALSE, density_plots = FALSE)

Visualize the CRTRs for the variables with the largest and third-largest
unity VIM values, where density plots are shown to visualize the
outcome class-specific distributions of the variables values in the
nodes with top-scoring splits:

reprTrees(model, indvars = c(2, 3), box_plots = FALSE, density_plots = TRUE)

Visualize the CRTRs for the variables with the largest and third-largest
unity VIM values, where both density plots and boxplots are shown to
visualize the outcome class-specific distributions of the variables values
in the top-scoring splits; the split points are not indicated in these
plots:
ps <- reprTrees(model, indvars = c(2, 3), add_split_line = FALSE)

Save one of the CRTRs with the corresponding density plot:

library("patchwork")
library("ggplot2")

p <- ps$plots[[1]]$tree_plot / ps$plots[[1]]$density_plot +
patchwork::plot_layout(heights = c(2, 1))

p

outfile <- file.path(tempdir(), "figure_xy.pdf")
ggsave(outfile, device = cairo_pdf, plot = p, width = 18,
height = 14)

unityfor 9

Note: The plots can be manipulated with the usual ggplot2 syntax, e.g.:

ps$plots[[1]]$density_plot + xlab("Proline") + labs(title = NULL, y = NULL) +
theme(
legend.position = c(0.95, 0.95),
legend.justification = c(1, 1)

)

unityfor Construct a unity forest prediction rule and compute the unity VIM.

Description

Constructs a unity forest and computes the unity variable importance measure (VIM), as described
in Hornung & Hapfelmeier (2026). Currently, only categorical outcomes are supported.
The unity forest algorithm is a tree construction approach for random forests in which the first few
splits are optimized jointly in order to more effectively capture interaction effects beyond marginal
effects. The unity VIM quantifies the influence of each variable under the conditions in which that
influence is strongest, thereby placing a stronger emphasis on interaction effects than conventional
variable importance measures.
To explore the nature of the effects identified by the unity VIM, it is essential to examine covariate-
representative tree roots (CRTRs), which are implemented in reprTrees.

Usage

unityfor(
formula = NULL,
dependent.variable.name = NULL,
data = NULL,
num.trees = 20000,
num.cand.trees = 500,
probability = TRUE,
importance = "none",
prop.best.splits = NULL,
min.node.size.root = NULL,
min.node.size = NULL,
max.depth.root = NULL,
max.depth = NULL,
prop.var.root = NULL,
mtry.sprout = NULL,
replace = FALSE,
sample.fraction = ifelse(replace, 1, 0.7),
case.weights = NULL,
class.weights = NULL,

10 unityfor

inbag = NULL,
oob.error = TRUE,
num.threads = NULL,
write.forest = TRUE,
verbose = TRUE

)

Arguments

formula Object of class formula or character describing the model to fit. Interaction
terms supported only for numerical variables.

dependent.variable.name

Name of outcome variable, needed if no formula given.

data Training data of class data.frame, matrix, dgCMatrix (Matrix) or gwaa.data
(GenABEL).

num.trees Number of trees. Default is 20000.

num.cand.trees Number of random candidate trees to generate for each tree root. Default is 500.

probability Grow a probability forest as in Malley et al. (2012). (NOTE: Currently only
probability forests are implemented, will be changed in the next version)

importance Variable importance mode, either ’unity’ (unity VIM) or ’none’.
prop.best.splits

Related to the unity VIM. Default value should generally not be modified by the
user. When calculating the unity VIM, only the top prop.best.splits× 100%
of the splits – those with the highest split criterion values weighted by node size
– are considered for each variable. The default value is 0.01, meaning that only
the top 1% of splits are used. While small values are recommended, they should
not be set too low to ensure that each variable has a sufficient number of splits
for a reliable unity VIM computation.

min.node.size.root

Minimal node size in the tree roots. Default is 10 irrespective of the outcome
type.

min.node.size Minimal node size. Default 1 for classification and 5 for probability.

max.depth.root Maximal depth of the tree roots. Default value is 3 and should generally not
be modified by the user. Larger values can be associated with worse predictive
performance for some datasets.

max.depth Maximal tree depth. A value of NULL or 0 (the default) corresponds to un-
limited depth, 1 to tree stumps (1 split per tree). Must be at least as large as
max.depth.root.

prop.var.root Proportion of variables randomly sampled for constructing each tree root. De-
fault is the square root of the number of variables divided by the number of
variables. Consequently, per default, for each tree root, a random subset of vari-
ables is considered, with size equal to the (rounded up) square root of the total
number of variables. An exception is made for datasets with more than 100
variables, where the default for prop.var.root is set to 0.1. See the ’Details’
section below for explanation.

unityfor 11

mtry.sprout Number of randomly sampled variables to possibly split at in each node of the
tree sprouts (i.e., the branches of the trees beyond the tree roots). Default is the
(rounded down) square root of the number variables.

replace Sample with replacement. Default is FALSE.

sample.fraction

Fraction of observations to sample for each tree. Default is 1 for sampling with
replacement and 0.7 for sampling without replacement.

case.weights Weights for sampling of training observations. Observations with larger weights
will be selected with higher probability in the bootstrap (or subsampled) samples
for the trees.

class.weights Weights for the outcome classes (in order of the factor levels) in the splitting
rule (cost sensitive learning). Classification and probability prediction only. For
classification the weights are also applied in the majority vote in terminal nodes.

inbag Manually set observations per tree. List of size num.trees, containing inbag
counts for each observation. Can be used for stratified sampling.

oob.error Compute OOB prediction error. Set to FALSE to save computation time.

num.threads Number of threads. Default is number of CPUs available.

write.forest Save unityfor.forest object, required for prediction. Set to FALSE to reduce
memory usage if no prediction intended.

verbose Show computation status and estimated runtime.

Details

There are two reasons why, for datasets with more than 100 variables, the default value of prop.var.root
is set to 0.1 rather than to the square root of the number of variables divided by the total number of
variables.

First, as the total number of variables increases, the square-root-based proportion decreases. This
makes it less likely that the same pairs of variables are selected together in multiple trees. This
can be problematic for the unity VIM, particularly for variables that do not have marginal effects
on their own but act only through interactions with one or a few other variables. Such variables
are informative in tree roots only when they are used jointly with the covariates they interact with.
Setting prop.var.root = 0.1 ensures that interacting covariates are selected together sufficiently
often in tree roots.

Second, this choice reflects the fact that in high-dimensional datasets, typically only a small propor-
tion of variables are informative. Applying the square-root rule in such settings may result in too
few informative variables being selected, thereby reducing the likelihood of constructing predictive
tree roots.

However, note that results obtained from applications of the unity forest framework to high-dimensional
datasets should be interpreted with caution. For high-dimensional data, the curse of dimensionality
makes the identification of individual interaction effects challenging and increases the risk of false
positives. Moreover, the split points identified in the CRTRs (reprTrees) may become less precise
as the number of covariates considered per tree root increases.

12 unityfor

Value

Object of class unityfor with elements

predictions Predicted classes/values, based on out-of-bag samples.

forest Saved forest (If write.forest set to TRUE). Note that the variable IDs in the
split.varIDs object do not necessarily represent the column number in R.

data Training data.

variable.importance

Variable importance for each independent variable. Only available if importance
is not "none".

importance.mode

Importance mode used.

prediction.error

Overall out-of-bag prediction error. For classification this is the fraction of miss-
classified samples, for probability estimation the Brier score and for regression
the mean squared error.

confusion.matrix

Contingency table for classes and predictions based on out-of-bag samples (clas-
sification only).

call Function call.

num.trees Number of trees.

num.cand.trees Number of candidate trees generated for each tree root.

num.independent.variables

Number of independent variables.

num.samples Number of samples.

prop.var.root Proportion of variables randomly sampled for each tree root.

mtry Value of mtry used (in the tree sprouts).

max.depth.root Maximal depth of the tree roots.

min.node.size.root

Minimal node size in the tree roots.

min.node.size Value of minimal node size used.

splitrule Splitting rule (used only in the tree sprouts).

replace Sample with replacement.

treetype Type of forest/tree. Classification or regression.

Author(s)

Roman Hornung, Marvin N. Wright

unityfor 13

References

• Hornung, R., Hapfelmeier, A. (2026). Unity Forests: Improving Interaction Modelling and
Interpretability in Random Forests. arXiv:2601.07003, <doi:10.48550/arXiv.2601.07003>.

• Wright, M. N., Ziegler, A. (2017). ranger: A fast implementation of random forests for
high dimensional data in C++ and R. Journal of Statistical Software 77:1-17, <doi:10.18637/
jss.v077.i01>.

• Breiman, L. (2001). Random forests. Machine Learning 45:5-32, <doi:10.1023/A:1010933404324>.

• Malley, J. D., Kruppa, J., Dasgupta, A., Malley, K. G., & Ziegler, A. (2012). Probability
machines: consistent probability estimation using nonparametric learning machines. Methods
of Information in Medicine 51:74-81, <doi:10.3414/ME00010052>.

See Also

predict.unityfor

Examples

Load package:

library("unityForest")

Set seed to make results reproducible:

set.seed(1234)

Load wine dataset:

data(wine)

Construct unity forest and calculate unity VIM values:

model <- unityfor(dependent.variable.name = "C", data = wine,
importance = "unity", num.trees = 20)

NOTE: num.trees = 20 (in the above) would be much too small for practical
purposes. This small number of trees was simply used to keep the
runtime of the example short.
The default number of trees is num.trees = 20000.

Inspect the rankings of the variables and variable pairs with respect to
the unity VIM:

sort(model$variable.importance, decreasing = TRUE)

Prediction:

https://doi.org/10.48550/arXiv.2601.07003
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.3414/ME00-01-0052

14 wine

Separate 'wine' dataset randomly in training
and test data:
train.idx <- sample(nrow(wine), 2/3 * nrow(wine))
wine_train <- wine[train.idx,]
wine_test <- wine[-train.idx,]

Construct unity forest on training data:
NOTE again: num.trees = 20 is specified too small for practical purposes.
model_train <- unityfor(dependent.variable.name = "C", data = wine_train,

importance = "none", num.trees = 20)
NOTE: Because we are only interested in prediction here, we do not
calculate unity VIM values (by setting importance = "none"), because
this speeds up calculations.

Predict class values of the test data:
pred_wine <- predict(model_train, data = wine_test)

Compare predicted and true class values of the test data:
table(wine_test$C, levels(wine_train$C)[apply(pred_wine$predictions, 1, which.max)])

wine Wine Chemical Analysis Data (Binary Cultivar)

Description

The well-known wine dataset comprises the results of chemical analyses of 178 wines produced in
the same region of Italy from three grape varieties (Barolo, Grignolino, and Barbera). The dataset
was originally introduced by Forina et al. (1984) and later described in detail by Forina et al. (1986).

Format

A data frame with 178 observations, 13 numeric covariates and one binary target variable.

Details

For each sample, 13 continuous chemical constituents were measured, which serve as covariates for
distinguishing between the grape varieties. For the analyses in this package, a version of the dataset
with a binary outcome is provided that differentiates between Grignolino ("G") and the two other
varieties ("Other"; Barolo and Barbera). This version is available on OpenML under data ID 973.

The variables are as follows:

• Alc. numeric. Alcohol.

• Mal. numeric. Malic acid.

• Ash. numeric. Ash.

• AlcAsh. numeric. Alkalinity of ash.

• Mg. numeric. Magnesium.

wine 15

• TP. numeric. Total phenols.

• Fla. numeric. Flavonoids.

• NFP. numeric. Nonflavonoid phenols.

• ProAn. numeric. Proanthocyanins.

• Col. numeric. Color intensity.

• Hue. numeric. Hue.

• WAI. numeric. OD280/OD315 of diluted wines (wine absorbance index).

• Prol. numeric. Proline.

• C. factor. Cultivar. Binary target variable: "G" vs "Other".

Source

OpenML: data.id: 973, link: https://www.openml.org/d/973/

References

• Forina, M. (1984). PARVUS, TrAC Trends in Analytical Chemistry, 3(2):38–39, <doi:10.1016/
01659936(84)870508>.

• Forina, M., Armanino, C., Castino, M., Ubigli, M. (1986). Multivariate data analysis as a dis-
criminating method of the origin of wines, Vitis, 25:189–201, <doi:10.5073/vitis.1986.25.189-
201>.

• Vanschoren, J., van Rijn, J. N., Bischl, B., Torgo, L. (2013). OpenML: networked science in
machine learning. SIGKDD Explorations, 15(2):49–60, <doi:10.1145/2641190.2641198>.

Examples

data(wine)

table(wine$C)
dim(wine)

head(wine)

https://www.openml.org/d/973/
https://doi.org/10.1016/0165-9936%2884%2987050-8
https://doi.org/10.1016/0165-9936%2884%2987050-8
https://doi.org/10.5073/vitis.1986.25.189-201
https://doi.org/10.5073/vitis.1986.25.189-201
https://doi.org/10.1145/2641190.2641198

Index

predict.unityfor, 2, 3, 13

reprTrees, 2, 4, 9, 11

unityfor, 2–4, 6, 7, 9
unityForest (unityForest-package), 2
unityForest-package, 2

wine, 14

16

	unityForest-package
	predict.unityfor
	reprTrees
	unityfor
	wine
	Index

