o
"I’ITAN

Programmers' Technical Reference
Guide for the TITAN TTCN-3 Toolset

Jen! Balaskd

2023-05-17

Table of Contents

1. About the Document

1.1.
1.2.
1.3.

Purpose
Target Groups

Typographical Conventions

2. TTCN-3 Limitations in this Version
3. Clarifications to the TTCN-3 Standard

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

Predefined Function Identifiers

Meaning of any and all

Response and Exception Handling Parts
Variable Lists in param Redirect
References between Language Elements
Encoding Rules

Address Type

Importing import Statement from TTCN-3 Modules

Description of Behavior Types Syntax

3.10. Partially initialized structure values

3.11. Concatenation of templates

3.12. The predefined function replace

3.13. The execution of an altstep
3.14. ASN.1 extension additions

4. TTCN-3 Language Extensions

4.1.
4.2.
4.3.
4.4,
4.5.
4.6.
4.7.
4.8.
4.9.

4.10.
4.11.
4.12.
4.13.

Syntax Extensions

Visibility Modifiers

The anytype

Ports and Test Configurations
Parameters of create Operation
Altsteps and Defaults
Interleave Statements

Logging Disambiguation

Value Returning done
Dynamic Templates
Template Module Parameters
Predefined Functions

Additional Predefined Functions

4.14. Exclusive Boundaries in Range Subtypes

4.15.
4.16.
4.17.

Special Float Values Infinity and not_a_number
TTCN-3 Preprocessing

Parameter List Extensions

© o b o N N N W NN

W W w w w M AhOMNMNMMOMOMMNMNMOMOMEPERPRPRPPRPRRRRRR
©W 0 00 00 N © 00 00 O B & W NN N O 0O O O U1 B W W N DN B+ O

4.18. function , altstep and testcase References 40

4.19. Function Types with a RunsOn_self Clause 40
4.20. TTCN-3 Macros 43
4.21. Component Type Compatibility 45
4.22. Implicit Message Encoding a7
4.23. RAW Encoder and Decoder 65
4.24. TEXT Encoder and Decoder 124
4.25. XML Encoder and Decoder 132
4.26. JSON Encoder and Decoder 155
4.27. OER Encoder and Decoder 201
4.28. Build Consistency Checks 201
4.29. Negative Testing 205
4.30. Testcase Stop Operation 224
4.31. Catching Dynamic Test Case Errors 224
4.32. Lazy Parameter Evaluation 226
4.33. Differences between the Load Test Runtime and the Function Test Runtime 227
4.34. Profiling and code coverage 233
4.35. Defining enumeration fields with values known at compile time 239
4.36. Ports with translation capability 240
4.37. Real-time testing features 243
4.38. Object-oriented features 245
4.39. Default alternatives of union types 253
4.40. Advanced matching 254
4.41. Logging sensitive data 255
5. Supported ASN.1 Constructs and Limitations 257
6. Compiling TTCN-3 and ASN.1 Modules 259
6.1. Command Line Syntax 259
6.2. The Compilation Process for TTCN-3 and ASN.1 Modules 283
6.3. Particularities of ASN.1 Modules 285
6.4. Using Component Relation Constraints from TTCN-3 288
7. The Run-time Configuration File 290
7.1. MODULE_PARAMETERS] 290
7.2. [LOGGING] 295
7.3.[TESTPORT_PARAMETERS] 323
7.4. [DEFINE] 324
7.5. [INCLUDE] 329
7.6.[ORDERED_INCLUDE] 330
7.7. [EXTERNAL_COMMANDS] 331
7.8. [EXECUTE] 332
7.9. [GROUPSParallel mode) 333

7.10. [COMPONENT=arallel mode) 334

7.11. [MAIN_CONTROLLH®RIrallel mode) 335

7.12. [PROFILER] 336
7.13. Dynamic Configuration of Logging Options 341
8. The TITAN Project Descriptor File 345
8.1. Project Name 347
8.2. Referenced Projects 347
8.3. Files and Folders 348
8.4. Path Variables 349
8.5. ActiveConfiguration 349
8.6. Configurations 350
8.7. Packed Referenced Projects 359
8.8. Important Information, Limitations 363
9. XSD to TTCN-3 Converter 365
9.1. Terminology 365
9.2. Schema Component 365
9.3. Command-line Syntax 365
9.4. The Compilation Process for XML Schema 367
9.5. Restrictions 371
9.6. Extensions 371
10. Code Coverage of TTCN-3 Modules 373
10.1. Generating Code Coverage 373
10.2. Converting Code Coverage Data from XML to HTML 374
10.3. Command Line Syntax of tcov2Icov 374
10.4. Limitations 375
11. The TTCN-3 Debugger 376
11.1. Gathered information 376
11.2. Breakpoints 377
11.3. User interface and list of commands 378
11.4. Example 387
12. Tips & Troubleshooting 392
12.1. Type Aliasing 392
12.2. Reusing Logged Values or Templates in TTCN-3 Code 392
12.3. Using the TTCN-3 Preprocessing Functionality 393
12.4. More Efficient Implementation of the Types record of and set of 394
12.5. Workflow for Native XML Support 394
12.6. Debug Memory Use of Record/set of Types 401
12.7. Parsing limitations 402
13. References 404

14. Abbreviations 406

Abstract

This document describes detailed information on writing components of executable test suites for
the TITAN TTCN-3 Toolset.

Copyright

Copyright (c) 2000-2023 Ericsson Telecom AB.

All rights reserved. This program and the accompanying materials are made available under the
terms of the Eclipse Public License v2.0 that accompanies this distribution, and is available at
https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

Disclaimer

The contents of this document are subject to revision without notice due to continued progress in
methodology, design and manufacturing. Ericsson should have no liability for any error or damage
of any kind resulting from the use of this document.

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

Chapter 1. About the Document

1.1. Purpose

The purpose of this document is to provide detailed information on writing components, for
example, test ports, and so on, for executable test suites.

1.2. Target Groups

This document is intended for programmers of TTCN-3 test suites with information in addition to
that provided in the TITAN User Guide . It is recommended that the programmer reads the TITAN
User Guide before reading this document.

1.3. Typographical Conventions

This document uses the following typographical conventions:

Bold is used to represent graphical user interface (GUI) components such as buttons, menus, menu
items, dialog box options, fields and keywords, as well as menu commands. Bold is also used with
O+0 to represent key combinations. For example, Ctrl+Click

The character * /' is used to denote a menu and sub-menu sequence. For example, File / Open .

Monospacedfont is used represent system elements such as command and parameter names,
program names, path names, URLSs, directory names and code examples.

Bold monospacedfont is used for commands that must be entered at the Command Line Interface
(CLI).

Chapter 2. TTCN-3 Limitations in this
Version

The present Test Executor is an implementation of TTCN-3 Core Language standard ([1]) with
support of ASN.1 ([3]). However, the following TTCN-3 language constructs are not supported in the
current version of the Test Executor. When applicable, the relevant clause of the standard text ([1])
is given within parentheses after each limitation. The list of ASN.1 related limitations can be found

in chapter 4.25.

¥ C++ code generation for parameterized local templates is not supported. M (5.0, relevant cells of
Table 1)
¥ Parameterized TTCN-3 record, set and union types . (5.4 in [1]))

¥ TTCN-3 sub-typing constraints are checked only at compilation time. In the run-time
environment the restricted types are substituted with the corresponding base type and no run-
time error is produced if the assigned value violates the subtype constraint.

¥ The special TTCN-3 type anytype is supported with restrictions. (6.2.6 in [1])
¥ Type compatibility of structured types. ¥ (6.3 in [1])

¥ Two (non-empty) component types are considered to be compatible only if the compatibility
relation is explicitly specified by the test suite writer. Details can be found in section 4.21. (6.3.3
and 9.3 in [1])

¥ Selective import statements. All TTCN-3 imports are treated as ~ import all . (8.2.3 and F.2 in [1])

¥ Type address must not be an external type specified outside TTCN-3. The special value null
cannot be assigned to variables of type address. (9.6 in [1])

¥ The compiler does not check whether a TTCN-3 function invoked from within a template,
Boolean guard expression of an alt construct, local variable initializer of an altstep or an
interleave statement has side-effects. The run-time behavior is undefined if a function with
side-effects (e.g.Ecommunication operations) is called while one of the above statements is being
executed. (20 in [1])

¥ The disconnect and unmapoperations cannot refer to multiple connections or mappings. (21.1.2,
relevant parts in [1])

¥ The sendand call operations cannot be used for multicast or broadcast communication. (22.2.1
and 22.3.1in [1])

¥ Attributes of type definitions cannot be changed when they are being imported. (27.1.2.1 in [1])

¥ Template instances cannot be used in the to clause of communication operations. Only values of
componeniand address types are allowed. (stated only in BNF)

¥ The additional predefined function decomps not implemented. (D.2 of [3])

¥ In port type definitions the list of incoming and outgoing message types or signatures must be
explicitly specified, the all keyword is ignored by the compiler. (G.3 in 1

¥ The TTCN-3 and ASN.1 modules are identified only by their names. Object identifiers in module
headers are ignored. Module object identifiers in import statements and references are skipped
without any checking, the semantic analyzer uses the module identifier only. (7.2.3 of [3],8.11in

[11)

¥ The comparison operators do not work on objid values. Only the equality (==) and non-equality
(!=) operators are allowed. (7.2.5.2 of [3], 7.1.3in [1])

¥ Templates can not be used in the parameter of encvalue built-in function. (C.38 in [1])

¥ The declaration of object identifiers can only point to constant values and integer variables,
references to objid variables are not supported.

¥ The Configuration and Deployment Support and the Advanced Parameterization packages of
the TTCN-3 standard are not supported yet, except the Port with translation capability clause.

([21]).

¥ In contrast to the standard, TITAN does not allow applying the same name to a structured type
and to an element of the same type.

¥ From version 1.8.pI3 (or R8D) the logging machinery uses an internal TTCN-3 module, named
TitanLoggerApi, hence using this module name in user code is not allowed.

¥ Referencing into an omitted field of any non-const variable/template of record/set type is
allowed and it will expand the structure to the level of reference. All the expanded fields under
omit will be unbound. This behavior is TITAN specific. According to the TTCN-3 standard (15.6.2
of [1]), the proper behavior would be a dynamic test case error in this situation. In case of
variable templates referencing into a matching mechanism will change the template regardless
of it being a left hand side or a right hand side value. In case of non-variable templates
referencing into a matching mechanism will cause an error. According to the TTCN-3 standard
the proper behavior for right hand side templates would be to return an expanded value but
not change itOs own value in case of AnyValue matching mechanism or stop with an error in
case of other matching mechanisms.

¥ According to the standard, before matching the tools have to make sure that the template being
used is completely initialized, with no fields or elements left unbound. For performance reasons
this check is not done before the matching is done. Instead the matching will report the error,
when it tries to use an unbound field or elements.

¥ In case the compiler is not able to decide at compile time, if all possible execution branches
contain a return statement, that is, in cases of alt statements, loops and branching statement
like if-else, select case, and so on, it will report an error without generating code. For example:

function f_check() return boolean {

E for (var integer i:=0; i < some_variable; i := i + 1) {
E return true;

E }

}

T

In this case the compiler will report an error as it can not evaluate, if the loop will be executed

at least once, and if the loop is not executed, the end of the function would be reached without a
return statement. The workaround for this kind of problem is easy, the user needs to insert an

extra return statement at the end of the function, like:

function f_check() return boolean {

E for (var integer i:=0; i < some_variable; i :=i+ 1) {
E return true;

E }return false

E}

¥ The language specification, after the "language” keyword, is ignored by the compiler.

¥ For record of/set of types of fixed size, which have a length restriction of one concrete value,
and arrays the sizeof() and lengthof() predefined functions are not standard compliant:
sizeof() returns the number of elements, lengthof() returns the index of the last initialized
element plus one.

¥ |Pv6 networking between the MC, HC and Parallel Test Components is supported only on Linux
and Cygwin 1.7.

¥ The optional "implicit omit" attribute can be applied directly to global value and template
definitions, but not to local value and template definitions.

¥ The optional "implicit omit" attribute can be applied to a module, in which case it will have
effect on global value and template definitions in the module, and local value and template
definitions in the module, with the exception of (local) variable definitions

¥ Templates using the decmatch (decoded content match, B.1.2.9 in [1]) matching mechanism
cannot be sent through test ports (doing so will result in a dynamic test case error). Template
module parameters using decmatchare also not supported.

¥ Since TITAN version R5B the matching symbol "** (AnyValueOrNone, B.1.2.4 in [1]) causes a
compile time error when assigned to a mandatory field of a record or set template, as it is stated
in the standard. This breaks backwards compatibility because in the older versions of TITAN
only a warning was emitted.

¥ When assigning a value to a structure using the value list notation, assignment notation or
index notation (but not when assigning values to fields or elements one at a time), if the
structureOs old value (or part of it) is referenced on the right hand side, the structureOs new
value will only contain the fields or elements set in that assignment. All other fields or elements
that may have been initialized in prior assignments will be set to unbound.

If the structureOs old value is not referenced on the right hand side of the assignment, then only
the fields or elements mentioned in the assignment will be overwritten. All other fields or
elements will retain their previous values. Example:

type record R {
E integer i1,

E integer i2,

E integer i3

}

E
varRx:={1,2,3}

x :={i2 := 3 }; /] assignment notation with no self-reference (OK)
llresult: x:={i1:=1,i2:=3,i3:=3}

x :={il:=x.i2 }; /l assighment notation with self-reference (not OK)
/[result: x :={il := 3, i2 := <unbound>, i3 := <unbound> }

X.i3 := x.i1; // individual field assignment with self-reference (OK)
/[result: x :={il := 3, i2 := <unbound>, i3 := 3}

¥ Declaring multiple user ports (i.e. non-internal ports) with the same name is not fully
supported. The generated headers of two modules containing user ports with the same name
will cause C++ compilation errors, if one of the modules imports the other, or if it imports a
module that imports the other, etc. It is advised to give all user ports unique names.

[1] The semantic analyzer is able to verify modules with such definitions, but the generated C++ code will be incomplete or
erroneous.

[2] Type compatibility for structured types is enabled only in the function test run-time due to performance considerations (except
record of/set of types for certain element types, see section 4.32.2). In the load test run-time aliased types and sub-types are treated
to be equivalent to their unrestricted root types. Different structured types are incompatible to each other. Two array types are
compatible if both have the same size and index offset and the element types are compatible according to the rules above.

[3] Recursive and non-recursive import means exactly the same when importing all definitions from a module.

Chapter 3. Clarifications to the TTCN-3
Standard

The TTCN-3 Core Language standard ([1]) and its Operational Semantics ([1]) give ambiguous
description for some language constructs. This section specifies our resolution for these ambiguities
that was followed during the implementation of our compiler and run-time environment.

3.1. Predefined Function Identifiers

The standard does not clarify the status of predefined function identifiers, that is, the names of
functions defined in Annex C of [1]. In our interpretation these words cannot be used to identify
userdefined TTCN3 entities because such a definition would hide the predefined function
completely. Thus our compiler treats these identifiers in the same way as the normal keywords of
the language. Therefore the inappropriate use of predefined functions, for example wrong number

of arguments, will result in syntax errors rather than semantic errors.

3.2. Meaning of any and all

The meaning of the keywords is only loosely defined in the standard. The resulting equivocality
concerns timer, port and component operations.

3.2.1. Timer and Port Operations

The meaning of keywords any and all in timer and port operations is unclear. These constructs
might be resolved statically at compilation time by applying the operation on all visible timers and

ports of the given scope unit. Our run-time environment, however, implements a dynamic
resolution, that is, it walks through the list of active timers and ports and applies the respective
operation. As a consequence of this, such operations are also applicable in scope units without
visible timers and ports, for example in functions without runs on clause. Because of the run-time
evaluation there is one limitation, which is verified by our semantic analyzer: the receiving port
operations, that is, receive , trigger , getcall , getreply , catch and check) that refer to any port cannot
have template parameter and value or param redirect. To avoid incompatibilities with future
versions it is not recommended to use anyor all in timer and port operations.

3.2.2. Component Operations

The standard does not specify explicitly the behavior of the component operations that refer to all
componentwhen only the MTC exists, that is, no PTC had been created during the testcase. In our
implementation both all component.running and all component.alive return true and the
operations all component.done and all component.kiled succeed immediately in this situation.
Operations all component.stop and all component.kill do nothing; instead, a warning is issued. The
same rules are applied in single mode, when it is impossible to create PTCs, as well.

3.3. Response and Exception Handling Parts

The behavior of the response and exception handling part of a call operation is not clearly
specified in the standard. The allowed getreply and catch operations can handle only the possible
responses and exceptions of the previous signature call. In our implementation if any other event
arrives into the port queue during the execution of the response and exception handling part it

may block the execution forever. The runtime environment generates a dynamic test case error in

such a situation. If the test suite writer expects any other event on the same port during the
outstanding call, for example a simultaneous incoming call initiated by the other side, a non-
blocking call operation with the keyword nowait should be used. The response and the possible
incoming calls should be handled in a forthcoming regular alt construct using the appropriate
getreply and getcall operations.

3.4. Variable Lists in param Redirect

In the standard, it is not clear that the VariableList notation in the paramredirect of getcall and
getreply operations should refer to all parameters of the respective signature or to the relevant
parameters) only. Our compiler expects variable entries only for the relevant parameters and
ignores the irrelevant ones. This is because otherwise the test writer should use NotUsedSymbol$or
all irrelevant parameters, which would be a redundant notation. For example, if a signature has

one in, one out and one inout parameter the compiler expects two variable entries in both getcall
and getreply operations.

3.5. References between Language Elements

The TTCN-3 standard does not specify clearly the permitted references between different kinds of
language elements. The following table shows our interpretation.

Table 1. References between TTCN-3 elements

Referred Literal value Constant External Module Template
element constant parameter
Referring

element

Constant Y Y* N N N
Array size Y Y N N N
Subtype Y Y N N N
constraint

Default value Y Y Y N N
of module

parameter

Referred
element
Referring
element

Actual value of
module
parameter (in
configuration
file)

Default
duration of
timer

Template (non-
parameterized)

Legend:

Literal value Constant External Module Template

constant parameter
Y N N N N
Y Y Y Y N
Y Y Y Y Y*

¥ N Not allowed by the TTCN-3 language.

¥ Y Allowed and fully supported by the current version of this TTCN-3 tool.

¥ Y* Allowed and fully supported, but circular reference chains must be avoided.

NOTE

¥ The above table implies that the value of all constants and the attributes of all
type constructs (type constraints, array sizes, etc.) shall be known at compilation
time.

¥ ASN.1 value assignments are treated as TTCN-3 constants.

¥ The value of constants shall refer only to built-in operators or additional
predefined functions.

¥ The body of non-parameterized templates and the default duration of timers
shall be known at test startup (load) time when all module parameters are
known.

¥ The actual parameters of templates or the actual duration of timers shall be
determined run-time because the actual value of variables may be referred.

¥ The rules for a language element do not depend on its scope unit. For example
the same rules apply on module, component and local (function, testcase,
altstep) constants.

3.6. Encoding Rules

The standard does not specify clearly some of the encoding rules.

¥ The encoding of fields in record, set and union types is supported.

¥ The order of attributes of the same type in a with statement is important. The second variant
might override the first, or an overriding attribute will override all the following attributes of

the same type.

¥ Encode attributes are an exception to this as they are not really attributes, but "contexts”. It
cannot be determined to which encode "contexts" the variants of the same with statement
should belong if there are several. As having several encode "contexts" in the same with
statement would be a bad coding practice, a warning is generated and the last encode is used as
the statementOs encode "contexts".

¥ As encodes are contexts, an encode is only overridden if the overriding context is not the same.

¥ The order of attributes of different type in a with statement is not important, they do not affect
each other.

¥ In case of structured types, the encode context of the type is the encode context of its fields too,
if the fields do not override this attribute. The other attribute types are handled separately for
the structured type and its fields. Attributes inherited from higher level
(module/group/structured type) might change the encoding of a record and that of its fields.

¥ Attributes with qualifiers referring to the same field are handled as if they were separate with
statements. The same rules apply to them. For example, the last encode from the ones referring
to the same field is taken as the encoding context of the field.

¥ Attributes belonging to a field of a structured type or a type alias have the following overwriting
rules. A new variant attribute together with the directive override clears all current attributes
defined for the type of the field. A new variant attribute without the directive override
overwrites only the current variant attribute, all other attributes remain unchanged.

3.7. Address Type

The standard does not specify clearly the status of special TTCN-3 type address. Our implementation
is based on the rules below.

The test suite writer can assign the name address to a regular data type. There can be at most one
type named address in each TTCN-3 module. It is allowed that different modules of the test suite
assign the name address to different types.

The name address cannot be assigned to the following TTCN-3 types:

¥ port types

¥ component types

¥ signatures

¥ the built-in type default

Whenever the word address is used as a type, it is assumed to be a reference to the type named
address in the current module. The type named address cannot be imported into another TTCN-3
module, that is, it can be referenced using the name address only within its own module. If one
wants to use this type in other modules a regular alternate name must be assigned to it with type
aliasing.

Addressing the SUT in communication operations is allowed only if the address type is defined in
the same module as the corresponding port type. In addition, the port type must have a special

10

extension attribute to support address values (See section "Support of address type"in [16] for more
details).

Note that it is possible to use different address types on different ports in the same TTCN-3 module
if the respective port types are imported from different modules, but neither address type may be
referenced with name address by the importing module.

3.8. Importing import Statement from TTCN-3 Modules
See[18] standard for detailed description. Additional information for better understanding:

¥ Import (see following chapters of the [18] standard 8.2.3.1-8.2.3.6, and 8.2.5, only applies for
global definitions (see [18] table 8. in 8.2.3.1), therefore import functionality is not interfered by
import of import statement.

¥ Import statement can be imported by only import of import statement (chapter 8.2.5 and
8.2.3.7).

¥ Import statements are by default private, importing of import statement with public or friend
visibility is recursively resolved, and thus importing of importing of import statement is
possible.

¥ Importing of import statement - in case of friend visibility -recursive resolving is broken, if the
import chain has a member that is not friend of the exporting module.

¥ Importing of import statement circular import chain causes error.

¥ Example for friend type and importing of import statement

B.ttcn // friend template
friend module C, E;

friend template integert B i fr:=0;

C.ttcn // public import and importing of import statement, friend of B
public import from B all;
public import from B {import all};

D.ttcn // public import and importing of import statement, NOT friend of B
public import from C all;
public import from C { import all };

E.ttcn // public import and importing of import statement, friend of B
public import from D { import all };
public import from D all;

testcase tc_B() runs on MTC {
var integer i:=valueof(t_B_i_fr); //Visible!
setverdict(pass);

}

11

3.9. Description of Behavior Types Syntax

TITAN supports the behaviour type package of the TTCN-3 standard, but with a different syntax. For
details of the behaviour types see [5].

Table 2. Behaviour types - refers shows the different syntax of the function behaviour type.

Standard (6.2.13.2in [5]) Titan specific syntax
type function MyFunc3 (in integer pl) return var MyFunc3 myVarl := refers(int2char);
charstring;

NOTE The functionality is same as in the standard, only the syntax is different.

The syntax of the apply operation is different, Table 3 Behaviour types - apply and derefers
Standard:

Table 3. Behaviour types - apply and derefers

Standard (6.2.13.2in [5]) Titan specific syntax
type function MyFuncType (); v_func.apply(MyVar2)
type function t_functionstartTests(); vl_comp.start(derefers(vl_function2)());

3.10. Partially initialized structure values

According to the standard TTCN-3 variables and module parameters (of structured types) can be in
3 different states during their initialization:

¥ uninitialized (or unbound) - none of the valueOs fields or elements has been initialized - values in
this state cannot be copied or used on the right hand side of an operation;

¥ partially initialized - some of the valueQOs fields or elements have been initialized, but not all of
them (or at least not enough to meet the minimum type restrictions) - these values can be
copied, but cannot be used on the right hand side of an operation;

¥ fully initialized (or bound) - all of the valueOs fields or elements have been initialized - these
values are ready to be used on the right hand side of an operation.

The isbound operation should only return true if the value is in the 3rd (fully initialized) state.

This isnOt the case in the TITAN runtime. Values only have 2 states: bound and unbound, which is
what the isbound operation returns. This can be any combination of the previously mentioned 3
states, depending on the type:

¥ record / set: unbound = uninitialized, bound = at least partially initialized, meaning that a record

/ set is bound if at least one of its fields is bound '

¥ record of [/ set of : unbound = uninitialized, bound = at least partially initialized, meaning that
the record of is only unbound if it has never received an initial value (even initializing with {}
creates a bound record of /setof value);

12

¥ array : unbound = uninitialized or partially initialized, bound = fully initialized, meaning that
the array is only bound if all of its elements are bound;

¥ unions canOt be partially initialized, so TITAN stores their bound state correctly (although itOs still
possible to create union values, where the selected alternative is unbound, with the legacy
command line option -B; these values would be considered bound by TITAN).

There is a workaround in TITANOs implementation of records / sets to allow the copying of partially
initialized values (union values with unbound selected alternatives can also be copied when the
compiler option -B is set). In all other cases the user is responsible for making sure the value is
usable on the right hand side of an operation. The isbound function is usually not enough to ensure,
that the value is usable.

3.11. Concatenation of templates

TITAN supports the concatenation of templates and template variables of string types (bitstring
hexstring , octetstring , charstring , universal charstring) and list types (record of , set of) with the
following limitations:

¥ templates can only be concatenated in the Function Test runtime;

¥ valid concatenation operands (for binary string and list types):

specific values (i.e.Eliteral values),

any value ("?") with no length restriction or with a fixed ! length restriction,

any value or none ("*") with a fixed length restriction,

references to constants, templates, variables, or template variables;

¥ operands of charstring and universal charstring template concatenation cannot contain
matching mechanisms (not even patterns), only specific values and references;

¥ reference operands of binary string (bitstring , hexstring , octetstring) template concatenation
can also refer to binary string templates with wildcards in addition to the template types listed
as valid operands (these cannot be used in template concatenations directly, because of parser
limitations);

¥ similarly, reference operands of record of or set of template concatenation can also refer to
template lists containing matching mechanisms (but these cannot appear in template
concatenations directly due to parser limitations);

¥ the first operand of a record of or set of template concatenation can only be a reference
(because of parser limitations);

¥ template module parameters cannot be concatenated in the configuration file.

3.12. The predefined function replace

In TITAN the predefined function replace cannot be used on arrays.

If the fourth parameter of replace is an empty string or sequence, then it acts as a delete function
(the specified substring or subsequence is simply removed from the input value and nothing is

13

inserted in its stead).

Example:

type record of integer IntList;

var IntList vl_myList:={1, 2,3 };

var IntList vI_emptyList := {};

replace(vl_myList, 1, 2, vl_emptyList); // returns { 1 }
replace("abcdef", 2, 1, "™); // returns "abdef"
replace('12FFF'H, 3, 2, "H); // returns '12F'H

3.13. The execution of an altstep

Whenever an altstep is called, either from an alt statement or through an activated

default , both

the local definitions and the alt -branches in the altstep body are executed. The local definitions
are allocated and initialized every time the altstep begins execution, and they are destroyed every
time execution of the altstep ends, regardless of whether any of the alt -branches was chosen.

Example:

type component CT {
E var integer counter := 0;
E timer tmr;

}

function f() runs on CT return integer {
E counter := counter + 1;
E return counter;

}

altstep as() runs on CT {
E var integer local := f();
E [] tmr.timeout { log(counter); }

}

testcase tc() runs on CT {
E tmr.start(2.0);

E alt {

E [as0;

E}

}
In the above example altstep as is executed twice. Once, after the first snapshot is taken in the
statement in testcase tc (when the timer has not timed out yet), and once, when the second
snapshot is taken (when the timer has timed out). In both cases the local definition in the altstep

initialized, calling function f. The value of component variable

14

counter at the time it is logged is 2.

alt

is

3.14. ASN.1 extension additions

Extension addition fields in ASN.1 SEQUEN@RdJ SETtypes are treated as optional fields, after they
are imported into TTCN-3. The ASN.1-based codecs, BERand OERstill treat these fields as they are
declared in ASN.1.

[4] Relevant parameters are the in and inout parameters in case of getcall operation as well as out and inout ones in case of
getreply.

[5] If component types were allowed for addressing the compiler would not be able to decide whether a component reference in
the to or from clause of a communication operation denotes a test component, which is reachable through a port connection or an
address inside the SUT, which is reachable through a port mapping.

[6] The values of type default (i.e.Ethe TTCN-3 default references) cannot be passed outside the test component by any means.
[7] The bound state of fields or elements is also determined by using the isbound operation on the field or element.

[8] In this case a range length restriction, whose upper and lower bounds are equal, is also considered as a ‘fixed' length
restrictione.g.: ? length(2..2) is a valid operand, but ? length(2..3) is not

15

Chapter 4. TTCN-3 Language Extensions

The Test Executor supports the following non-standard additions to TTCN-3 Core Language in order
to improve its usability or provide backward compatibility with older versions.

4.1. Syntax Extensions

The compiler does not report an error or warning if the semi-colon is missing at the end of a TTCN-
3 definition although the definition does not end with a closing bracket.

The statement block is optional after the guard operations of altsteps , alt and interleave
constructs and in the response and exception handling part of call statements. A missing statement
block has the same meaning as an empty statement block. If the statement block is omitted, a
terminating semi-colon must be present after the guard statement.

The standard escape sequences of C/C++ programming languages are recognized and accepted in
TTCN-3 character string values, that is, in literal values of charstring and universal charstring
types, as well as in the arguments of built-in operations log() and action() .

As a consequence of the extended escape sequences and in contrast with the TTCN-3
NOTE standard, the backslash character itself has to be always duplicated within
character string values.

The following table summarizes all supported escape sequences of TTCN-3 character string values:

Table 4. Character string escape sequences

Escape sequence Character code (decimal) Meaning
7 bell
8 backspace
12 new page
10 line feed
13 carriage return
9 horizontal tabulator
11 vertical tabulator
\ 92 backslash
" 34 guotation mark
' 39 apostrophe
? 63 guestion mark
E<newline> nothing line continuation
NNN octal notation (NNN is the
character code in at most 3
octal digits)

16

Escape sequence Character code (decimal) Meaning

NN hexadecimal notation (NN is the

character code in at most 2
hexadecimal digits)

34 guotation mark (standard
notation of TTCN-3)

Only the standardized escape sequences are recognized in matching patterns of
NOTE character string templates because they have special meaning there. For example,
inside string patterns \n denotes a set of characters rather than a single character.

Although the standard requires that characters of TTCN-3 charstring values must be between 0 and

127, TITAN allows characters between 0 and 255. The printable representation of characters with
code 128 to 255 is undefined.

The compiler implements an ASN.1-like scoping for TTCN-3 enumerated types, which means it
allows the re-use of the enumerated values as identifiers of other definitions. The enumerated

values are recognized only in contexts where enumerated values are expected; otherwise the
identifiers are treated as simple references. However, using identifiers this way may cause

misleading error messages and complicated debugging.

The compiler allows the local definitions (constants, variables, timers) to be placed in the middle of
statement blocks, that is, after other behavior statements. The scope of such definitions extends
from the statement following the definition to the end of the statement block. Forward-referencing

of local definitions and jumping forward across them using goto statements are not allowed.

The compiler accepts in-line compound values in the operands of TTCN-3 expressions although the
BNF of the standard allows only single values. The only meaningful use of the compound operands
is with the comparison operators, that is, == and !=. Two in-line compound values cannot be
compared with each other because their types are unknown; at least one operand of the
comparison must be a referenced value. This feature has a limitation: In the places where in-line
compound templates are otherwise accepted by the syntax (e.g.Ein the right-hand side of a variable
assignment or in the actual parameter of a function call) the referenced value shall be used as the
left operand of the comparison. Otherwise the parser gets confused when seeing the comparison
operator after the compound value.

Examples:

17

4

TITAN defines 3 visibility modifiers for module level definitions, and component member

[/l invalid since neither of the operands is of known type

if{1,2}=={2,1){}

// both are valid
while (v_myRecord == {1, omit}) { }
if ({f1:=1, f2 := omit}!=v_mySet) {}

/ rejected because cannot be parsed
v_myBooleanFlag :={ 1, 2, 3} == v_myRecordOf;
f_myFunctionTakingBoolean({ 1, 2, 3 } = v_mySetOf);

/I in reverse order these are allowed

v_myBooleanFlag := v_myRecordOf == {1, 2, 3 };
f_myFunctionTakingBoolean(v_mySetOf |={ 1, 2, 3 });

2. Visibility Modifiers

definitions: public, private, friend (8.2.5 in [1]).

On module level definitions they mean the following:

¥ The public modifier means that the definition is visible in every module importing its module.
¥ The private modifier means that the definition is only visible within the same module.

¥ The friend modifier means that the definition is only visible within modules that the actual

If no visibility modifier is provided, the default is the public modifier.

In

¥ The public modifier means that any function/testcase/altstep running on that component can

¥ The private modifier means that only those functions/testcases/altsteps can access the definition
which runs on the component type directly. If they run on a component type extending the one

module declared as a friend module.

component member definitions they mean the followings:

access the member definition directly.

containing the definition, it will not be directly visible.

The friend modifier is not available within component types.

Example:

18

module modulel

{

import from module2 all;
import from module3 all;
import from module4 all;

const module2Type akarmil := 1; //OK, type is implicitly public

const module2TypePublic akarmi2 := 2; //OK, type is explicitly public

const module2TypeFriend akarmi3 := 3; //OK, modulel is friend of module2

const module2TypePrivate akarmi4 := 4; //INOK, module2TypePrivate is private to module2

const module3Type akarmi5 := 5; //OK, type is implicitly public

const module3TypePublic akarmi6 := 6; //OK, type is explicitly public

const module3TypeFriend akarmi7 := 7; //INOK, modulel is NOT a friend of module3

const module3TypePrivate akarmi8 := 8; //NOK, module2TypePrivate is private to module2

type component User_CT extends Lib4 CT {};

function f_set3_Lib4 _1() runs on User CT{v_Lib4 1:=0}//OK

function f_set3_Lib4 2() runs on User CT{v_Lib4 2:=0}//OK

function f_set3_Lib4_3() runs on User_CT {v_Lib4_3:=0}//NOK, v_Lib4_3 is private
}

module module2

{

friend module modulel;

type integer module2Type;

public type integer module2TypePublic;
friend type integer module2TypeFriend;
private type integer module2TypePrivate;
} /I end of module

module module3

{

type integer module3Type;

public type integer module3TypePublic;
friend type integer module3TypeFriend;
private type integer module3TypePrivate;
} /1 end of module

module module4 {

type component Lib4_CT {
var integer v_Lib4_1;

public var integer v_Lib4_2;
private var integer v_Lib4_3;

}

19

4.3. The anytype

The special TTCN-3 type anytype is defined as shorthand for the union of all known data types and

the address type (if defined) in a TTCN-3 module. This would result in a large amount of code
having to be generated for the anytype, even if it is not actually used. For performance reasons,
Titan only generates this code if a variable of anytype is declared or used, and does not create fields

in the anytype for all data types. Instead, the user has to specify which types are needed as anytype
fields with an extension attribute at module scope.

Examples:

20

module elsewhere {

E type float money:;

E type charstring greeting;
}

module local {

E import from elsewhere all;
E type integer money;

E type record MyRec {

E integer i,

E float f

E}

control {

E var anytype v_any;

E v_any.integer := 3;

E // ischosen(v_any.integer) == true

E v_any.charstring := "three";
E // ischosen(v_any.charstring) == true

E v_any.greeting := "hello”;
E // ischosen(v_any.charstring) == false
E // ischosen(v_any.greeting) == true

Ev_any.MyRec :={i:=42,f:=05}
E // ischosen(v_any.MyRec) == true

E v_any.integer := v_any.MyRec.i - 2;

E // back to ischosen(v_any.integer) == true v_any.money := 0;
E // local money i.e.Einteger

E // not elsewhere.money (float)

E // ischosen(v_any.integer) == false

E // ischosen(v_any.money) == true

E // error: no such field (not added explicitly)
E // v_any.float := 3.1;

E // error: v_any.elsewhere.money
E}
}

with {

extension "anytype integer, charstring” // adds two fields
extension "anytype MyRec" // adds a third field
extension "anytype money" // adds the local money type
/Inot allowed: extension "anytype elsewhere.money"
extension "anytype greeting" // adds the imported type}

In the above example, the anytype behaves as a union with five fields named "integer”,

charstring",

21

"MyRec", "money" and "greeting”. The anytype extension attributes are cumulative; the effect is the
same as if a single extension attribute contained all five types.

NOTE Field "greeting" of type charstring is distinct from the field "charstring" even though
they have the same type (same for "integer" and "money").

Types imported from another module (elsewhere) can be added to the anytype of the importing
module (local) if the type can be accessed with its unqualified name, which requires that it does not
clash with any local type. In the example, the imported type "greeting" can be added to the anytype
of module local, but "money" (a float) clashes with the local type "money" (an integer). To use the
imported "money", it has to be qualified with its module name, for example a variable of type
elsewhere.money can be declared, but elsewhere.money can not be used as an anytype field.

4.4. Ports and Test Configurations

If all instances of a TTCN-3 port type are intended to be used for internal communication only
(i.e.Ebetween two TTCN-3 test components) the generation and linking of an empty Test Port
skeleton can be avoided. If the attribute with { extension "internal" } is appended to the port type
definition, all C++ code that is needed for this port will be included in the output modules. [9]

If the user wants to use address values in to and from clause and sender redirect of TTCN-3 port
operations the with { extension "address" } attribute shall be used in the corresponding port type
definition(s) to generate proper C++ code.

When address is used in port operations the corresponding port must have an
active mapping to a port of the test system interface, otherwise the operation will

NOTE fail at runtime. Using of address values in to and from clauses implicitly means
system as component reference. (See section "Support of address type" in [16] for
more details). [10]

Unlike the latest TTCN-3 standard, our run time environment allows to connect a TTCN-3 port to
more than one ports of the same remote test component. When these connections persist (usually

in transient states), only receiving is allowed from that remote test component, because the
destination cannot be specified unambiguously in the to clause of the sendoperation. Similarly, it is
allowed to map a TTCN-3 port to more than one ports of the system, although it is not possible to
send messages to the SUT.

4.5. Parameters of create Operation

The built-in TTCN-3 create operation can take a second, optional argument in the parentheses. The
first argument, which is the part of the standard, can assign a name to the newly created test
component. The optional, non-standard second argument specifies the location of the component.
Also the second argument is a value or expression of type charstring .

According to the standard the component name is a user-defined attribute for a test component,
which can be an arbitrary string value containing any kind of characters including whitespace. It is
not necessary to assign a unique name for each test component; several active test components can

22

have the same name at the same time. The component name is not an identifier; it cannot be used
to address test components in configuration operations as component references can. The name
can be assigned only at component creation and it cannot be changed later.

Component name is useful for the following purposes:

¥ it appears in the printout when logging the corresponding component reference;
¥ it can be incorporated in the name of the log file (see the metacharacter %o;

¥ it can be used to identify the test component in the configuration file (when specifying test port
parameters (see section [LOGGING]component location constraints (see section [COMPONENTS]
(Parallel mode)) and logging options (see sections FileMask and ConsoleMask

Specifying the component location is useful when performing distributed test execution. The value

used as location must be a host name, a fully qualified domain name, an IP address or the name of

a host group defined in the configuration file (see section [GROUPS] (Parallel mode)). The explicit
specification of the location overrides the location constraints given in the configuration file (see
section [COMPONENTS] (Parallel mode) for detailed description). If no suitable and available host is
found the create operation fails with a dynamic test case error.

If only the component name is to be specified, the second argument may be omitted. If only the
component location is specified a NotUsedSymbdhall be given in the place of the component name.

Examples:

/[create operation without arguments
var MyCompType v_myCompRef := MyCompType.create;

/l component name is assigned
v_myCompRef := MyCompType.create("myCompName");

/[l component name is calculated dynamically
v_myCompArray[i] := MyCompType.create("myName" & int2str(i));

/l both name and location are specified (non-standard notation)
v_myCompRef := MyCompType.create("myName", "heintel");

I/l only the location is specified (non-standard notation)
v_myCompRef := MyCompType.create(-, "159.107.198.97") alive;

4.6. Altsteps and Defaults

According to the TTCN-3 standard an altstep can be activated as default only if all of its value
parameters are in parameters. However, our compiler and run-time environment allows the
activation of altsteps with out or inout value or template parameters as well. In this case the actual
parameters of the activated default shall be the references of variables or template variables that
are defined in the respective component type. This restriction is in accordance with the rules of the
standard about timer parameters of activated defaults.

23

Passing local variables or timers to defaults is forbidden because the lifespan of
local definitions might be shorter than the default itself, which might lead to
unpredictable behavior if the default is called after leaving the statement block that
the local variable is defined in. Since ports can be defined only in component types,
there is no restriction about the port parameters of altsteps . These restrictions are
not applicable to direct invocations of altsteps (e.g.Einalt constructs).

NOTE

The compiler allows using a statement block after altstep instances within alt statements. The
statement block is executed if the corresponding altstep instance was chosen during the evaluation
of the alt statement and the altstep has finished without reaching a repeat or stop statement. This
language feature makes the conversion of TTCN-2 test suites easier.

NOTE This construct is valid according to the TTCN-3 BNF syntax, but its semantics are not
mentioned anywhere in the standard text.
The compiler accepts altsteps containing only an [else] branch. This is not allowed by the BNF as
every altstep must have at least one regular branch (which can be either a guard statement or an
altstep instance). This construct is practically useful if the corresponding altstep is instantiated as
the last branch of the alternative.

4.7. Interleave Statements

The compiler realizes TTCN-3 interleave statements using a different approach than it is described
in section 7.5 of [1]. The externally visible behavior of the generated code is equivalent to that of the
canonical mapping, but our algorithm has the following advantages:

¥ Loop constructs for, while and do-while loops are accepted and supported without any
restriction in interleave statements. The transformation of statements is done in a lower level
than the TTCN-3 language, which does not restrict the embedded loops.

¥ Statements activate , deactivate and stop can also be used within interleave . The execution of
these statements is atomic so we did not see the reason why the standard forbids them.

¥ The size of our generated code is linear in contrast to the exponential code growth of the
canonical algorithm. In other words, the C++ equivalent of every embedded statement appears
exactly once in the output.

¥ The run-time realization does not require any extra operating system resources, such as multi-
threading.

4.8. Logging Disambiguation

The TTCN-3 log statement provides the means to write logging information to a file or display on
console (standard error). Options FileMask and ConsoleMaslkdetermine which events will appear in
the file and on the console, respectively. The generated logging messages are of type
USER_UNQUALIFIED

The log statement accepts among others fixed character strings TTCN-3 constants, variables, timers,
functions, templates and expressions; for a complete list please refer to the table 18 in [1]. It is

24

allowed to pass multiple arguments to a single log statement, separated by commas.

The TTCN-3 standard does not specify how logging information should be presented. The following
sections describe how TITAN implemented logging.

The arguments of the TTCN-3 statement action are handled according to the same rules as log.

4.8.1. Literal Free Text String

Strings entered between quotation marks (™) [11] and the results of special macros given in section
TTCN-3 Macros in the argument of the log statement are verbatim copied to the log. The escape
sequences given in Table 4 are interpreted and the resulting non-printable characters (such as
newlines, tabulators, etc.) will influence the printout.

Example:
log("'foo");//The log printout will look like this:
E12:34:56.123456 foo
Ebar

4.8.2. TTCN-3 Values and Templates

Literal values, referenced values or templates, wildcards, compound values, in-line (modified)
templates, etc. (as long as the type of the expression is unambiguous) are discussed in this section.

These values are printed into the log using TTCN-3 Core Language syntax so that the printout can be
simply copied into a TTCN-3 module to initialize an appropriate constant/variable/template, etc.

In case of (universal) charstring values the delimiter quotation marks (") are printed and the
embedded non-printable characters are substituted with the escape sequences in the first 9 rows of
Table 4. All other non-printable characters are displayed in the TTCN-3 quadruple notation.

If the argument refers to a constant of type charstring , the actual value is not substituted to yield a
literal string.

Example:
const charstring ¢_string := "foo\000";
log(c_string);

/[The log printout will look like this:
12:34:56.123456 "foo" & char(0, 0, 0, 0)

4.8.3. Built-in Function match()

For the built-in match() function the printout will contain the detailed matching process field-by-
field (similarly to the failed receive statements) instead of the Boolean result.

This rule is applied only if the® match()" operation is the top-level expression to be logged, see the

25

example below:

E// this will print the detailed matching process
log(match(v_myvalue, t_template));

E// this will print only a Boolean value (true or false)
log(not not match(v_myvalue, t_template));

All the other predefined and user-defined functions with actual arguments will print the return
value of the function into the log according to the TTCN-3 standard.

4.8.4. Special TTCN-3 Objects

If the argument refers to a TTCN-3 port, timer or array (slice) of the above, then the actual
properties of the TTCN-3 object is printed into the log.

For ports the name and the state of the port is printed.

In case of timers the name of the timer, the default duration, the current state (inactive , started or
expired), the actual duration and the elapsed time (if applicable) is printed in a structured form.

4.9. Value Returning done

The compiler allows starting TTCN-3 functions having return type on PTCs. Those functions must
have the appropriate runs on clause. If such a function terminates normally on the PTC, the
returned value can be matched and retrieved in a doneoperation.

According to the TTCN-3 standard, the value redirect in a done operation can only be used to store
the local verdict on the PTC that executed the behavior function. In TITAN the value redirect can

also be used to store the behavior functionOs return value with the help of an optional template
argument.

If this template argument is present, then the compiler treats it as a value returning done
operation, otherwise it is treated as a verdict returning done

The following rules apply to the optional template argument and the value redirect:

¥ The syntax of the template and value redirect is identical with that of the receive operation.

¥ If the template is present, then the type of the template and the variable used in the value
redirect shall be identical. If the template is not present, then the type of the value redirect must
be verdicttype .

¥ In case of a value returning done the return type shall be a TTCN-3 type marked with the
following attribute: with { extension "done" } . It is allowed to mark and use several types in
done statements within one test suite. If the type to be used is defined in ASN.1 then a type alias
shall be added to one of the TTCN-3 modules with the above attribute.

¥ In case of a value returning done the type of the template or variable must be visible from the
module where the donestatement is used.

¥ Only those done statements can have a template or a value redirect that refer to a specific PTC

26

component reference. That is, it is not allowed to use this construct with any component.doneor
all component.done .

A value returning donestatement is successful if all the conditions below are fulfilled:

¥ The corresponding PTC has terminated.

¥ The function that was started on the PTC has terminated normally. That is, the PTC was stopped
neither by itself nor by other component and no dynamic test case error occurred.

¥ The return type of the function that was started on the PTC is identical to the type of the
template used in the donestatement.

¥ The value returned by the function on the PTC matches the given template.
If the doneoperation was successful and the value redirect is present the value returned by the PTC

(if there was a matching template), or the local verdict on the PTC (if there was no matching
template) is stored in the given variable or variable field.

The returned value can be retrieved from alive PTCs, too. In this case the done operation always
refers to the return value of the lastly started behavior function of the PTC. Starting a new function

on the PTC discards the return value of the previous function automatically (i.e.Eit cannot be
retrieved or matched after the start component operation anymore).

Example:

27

type integer MyReturnType with { extension "done" };

function ptcBehavior() runs on MyCompType return MyReturnType
{

E setverdict(inconc);
E return 123;

}

// value returning 'done’
testcase myTestCase() runs on AnotherCompType

{
E var MyReturnType myVar;

E var MyCompType ptc := MyCompType.create;
E ptc.start(ptcBehavior());

E ptc.done(MyReturnType : ?) -> value myVar;
E // myVar will contain 123

}

[l verdict returning ‘done'
testcase myTestCase?2() runs on AnotherCompType

{

E var verdicttype myVar;

E var MyCompType ptc := MyCompType.create;
E ptc.start(ptcBehavior());

E ptc.done -> value myVar;

E // myVar will contain inconc

}

4.10. Dynamic Templates

Dynamic templates (template variables, functions returning templates and passing template
variables by reference) are now parts of the TTCN-3 Core Language standard ([1]). These constructs
have been added to the standard with the same syntax and semantics as they were supported in

this Test Executor. Thus dynamic templates are not considered language extensions anymore.

However, there is one extension compared to the supported version of Core Language. Unlike the
standard, the compiler and the run-time environment allow the external functions to return
templates.

Example:

/I this is not valid according to the standard
external function MyExtFunction() return template octetstring;

4.11. Template Module Parameters

The compiler accepts template module parameters by inserting an optional "template” keyword

28

into the standard modulepar syntax construct between the modulepar keyword and the type
reference. The extended BNF rule:

ModuleParDef ::= "modulepar" (ModulePar | ("{"MultiTypedModuleParList "}"))ModulePar
= ['template”] Type ModuleParList

Example:

modulepar template charstring mp_tstrl ;= ("a" .. "f") ifpresent
modulepar template integer mp_tint := complement (1,2,3)

4.12. Predefined Functions

The built-in predefined functions ispresent , ischosen, lengthof and sizeof are applicable not only to
value-like language elements (constants, variables, etc.), but template-like entities (templates,
template variables, template parameters) as well. If the function is allowed to be called on a value

of a given type it is also allowed to be called on a template of that type with the meaning described

in the following subchapters.

"dynamic test case error" does not necessarily denote here an error situation: it may

NOTE .
well be a regular outcome of the function.

4.12.1. sizeof

The function sizeof is applicable to templates of record, set, record of, set of and objid types. The
function is applicable only if the sizeof function gives the same result on all values that match the
template. [12] In case of record of and set of types the length restrictions are also considered.
Dynamic test case error occurs if the template can match values with different sizes or the length
restriction contradicts the number of elements in the template body.

Examples:

29

type record of integer R;

type set S { integer f1, bitstring f2 optional, charstring f3 optional }
template R tr_1 :={ 1, permutation(2, 3), ? }

template Rtr_2:={1, *, (2, 3) }

template R tr_3:={1, *, 10 } length(5)

template Rtr_4 :={1, 2, 3, * } length(1..2)

template S tr_ 5 :={f1:=(0..99), f2 := omit, f3:=?}
template Str_6 :={f3:=* f1:=1, f2 :='00'B ifpresent }
template Str_7 := ({f1 := 1, f2 := omit, f3 := "ABC" },

E {fl1:=2,f3:=omit, f2:="'1B})

template Str_ 8 :=?

lIsizeof(tr_1) ! 4
IIsizeof(tr_2) ! error
/Isizeof(tr_3)!5
lIsizeof(tr_4) ! error
IIsizeof(tr_5) ! 2
I[sizeof(tr_6) ! error
IIsizeof(tr_7)!2
I[sizeof(tr_8) ! error

4.12.2. ispresent

The predefined function ispresent has been extended; its parameter can now be any valid
Templatelnstance. It is working according to the following ETSI CRs: http://forge.etsi.org/mantis/
view.php?id=5934 and http://forge.etsi.org/mantis/view.php?id=5936

4.12.3. oct2unichar

The function oct2unichar (in octetstring invalue , in charstring string_encoding := "UTF-8")
return universal charstring converts an octetstring invalue to a universal charstring by use of the
given string_encoding . The octets are interpreted as mandated by the standardized mapping
associated with the given string_encoding and the resulting characters are appended to the
returned value. If the optional string_encoding parameter is omitted, the default value "UTF-8".

The following values are allowed as string_encoding actual parameters: UTF8UTF-16 UTF-16BEUTF-
16LE UTF-32 UTF-32BRJTF-32LE

DTE occurs if the invalue does not conform to UTF standards. The oct2unichar checks if the Byte
Order Mark (BOM) is present. If not a warning will be appended to the log file. oct2unichar will
decodethe invalue even in absence of the BOM.

Any code unit greater than 0x10FFFF is ill-formed.
UTF-32 code units in the range of 0x0000D800 - 0OX0000DFFF are ill-formed.
UTF-16 code units in the range of 0xD800 - OXDFFF are ill-formed.

UTF-8 code units in the range of 0xD800 - OXDFFF are ill-formed.

30

http://forge.etsi.org/mantis/view.php?id=5934
http://forge.etsi.org/mantis/view.php?id=5934
http://forge.etsi.org/mantis/view.php?id=5936

Example:

oct2unichar('C384C396C39CC3A4C3B6C3BC'O)="A0U4&61";oct2unichar('00C400D600DCO0E400F600F
C'O,"UTF-16LE") = "AOU&su";

4.12.4. unichar2oct

The function unichar2oct (in universal charstring invalue, in charstring string_encoding :=
"UTF-8") return octetstring converts a universal charstring invalue to an octetstring. Each octet of

the octetstring will contain the octets mandated by mapping the characters of invalue using the
standardized mapping associated with the given string_encoding in the same order as the
characters appear in inpar. If the optional string_encoding parameter is omitted, the default

encoding is "UTF-8".

The following values are allowed as string_encoding actual parameters: UTF-8, UTF-8 BOM, UTF-16,
UTF-16BE, UTF-16LE, UTF-32, UTF-32BE, UTF-32LE.

The function unichar2oct adds the Byte Order Mark (BOM) to the beginning of the octetstring in
case of UTF-16and UTF-32encodings. The remove_borfunction helps to remove it, if it is not needed.
The presence of the BOM is expected at the inverse function oct2unichar because the coding type
(without the BOM) can be detected only in case of UTF-8encoded octetstring . By default UTF-8
encoding does not add the BOM to the octetstring , however UTF-8BOMncoding can be used to add
it.

DTE occurs if the invalue does not conform to UTF standards.
Any code unit greater than 0x10FFFF is ill-formed.

Example:

unichar2oct("AOU&60") = 'EFBBBFC384C396C39CC3A4C3B6C3BC'O;
unichar2oct("AOU&6U","UTF-16LE") = 'FFFE00C400D600DCO0E400F600FC'O;

4.12.5. get_stringencoding

The function get_stringencoding (in octetstring encoded_value) return charstring identifies the
encoding of the encoded_value The following return values are allowed as charstring: ASCII, UTF-8,
UTF-16BE, UTF-16LE, UTF-32BE, UTF-32LE.

If the type of encoding could not been identified, it returns the value: <unknown>

Example:

var octetstring invalue := 'EFBBBFC384C396C39CC3A4C3B6C3BC'O;
var charstring codingtype := get_stringencoding(invalue);
the resulting codingtype is "UTF-8"

31

4.12.6. remove_bom

The function remove_bom (in octetstring encoded_value) return octetstring strips the BOM if it is
present and returns the original octetstring otherwise.

Example:

var octetstring invalue := 'EFBBBFC384C396C39CC3A4C3B6C3BC'O;
var octetstring nobom :=remove_bom(invalue);
the resulting nobom contains: 'C384C396C39CC3A4C3B6C3BC'O;

4.13. Additional Predefined Functions

In addition to standardized TTCN-3 predefined functions given in Annex C of [1] and Annex B of [3]
the following built-in conversion functions are supported by our compiler and run-time
environment:

4.13.1. str2bit

The function str2bit (charstring value) return bitstring converts a charstring value to a
bitstring , where each character represents the value of one bit in the resulting bitstring. Its
argument may contain the characters "0" or "1" only, otherwise the result is a dynamic test case

error.

NOTE This function is the reverse of the standardized bit2str .

Example:

str2bit ("1011011100") ='1011011100'B

4.13.2. str2hex

The function str2hex (charstring value) return hexstring converts a charstring value to a
hexstring , where each character in the character string represents the value of one hexadecimal

digit in the resulting hexstring . The incoming character string may contain any number of
characters. A dynamic test case error occurs if one or more characters of the charstring are outside

the ranges "0" .. "9", "A" .. "F" and "a" .. "f".

NOTE This function is the reverse of the standardized hex2str .

Example:

str2hex ("1D7") = '1D7'H

32

4.13.3. float2str

The function float2str (float value) return charstring converts a float value to a charstring . If
the input is zero or its absolute value is between 10 ™ and 10", the decimal dot notation is used in
the output with 6 digits in the fraction part. Otherwise the exponential notation is used with
automatic (at most 6) digits precision in the mantissa.

Example:

float2str (3.14) = "3.140000"

4.13.4. unichar2char

The function unichar2char (universal charstring value) return charstring converts a’ universal
charstring” value to a charstring . The elements of the input string are converted one by one. The
function only converts universal characters when the conversion result lies between 0 end 127
(that is, the result is an ISO 646 character).

The inverse conversion is implicit, that is, the charstring values are converted to
NOTE universal charstring values automatically, without the need for a conversion
function.

Example:

unichar2char(char(0,0,0,64)) ="@"

4.13.5. log2str
The function log2str can be used to log into charstring instead of the log file.

Syntax:

log2str (E) return charstring

This function can be parameterized in the same way as the log function, it returns a charstring
value which contains the log string for all the provided parameters, but it does not contain the
timestamp, severity and call stack information, thus the output does not depend on the runtime
configuration file. The parameters are interpreted the same way as they are in the log function:
their string values are identical to what the log statement writes to the log file. The extra
information (timestamp, severity, call stack) not included in the output can be obtained by writing
external functions which use the runtimeOs Logger class to obtain the required data.

4.13.6. testcasename

The function testcasenamereturns the unqualified name of the actually executing test case. When it
is called from the control part and no test case is being executed, it returns the empty string.

33

Syntax:

testcasename () return charstring

4.13.7. isbound

The function isbound behaves identically to the isvalue function with the following exception: it
returns true for a record-of value which contains both initialized and uninitialized elements.

type record of integer rint;

var rint r_u; // uninitialized

isvalue(r_u); // returns false

isbound(r_u); // returns false also

/llengthof(r_u) would cause a dynamic testcase error

var rintr_0 :={} // zero length
isvalue(r_3); // returns true
isbound(r_3); // returns true
lengthof(r_3); // returns O

varrintr_3:={0, -, 2}// has a "hole"
isvalue(r_3); // returns false
isbound(r_3); // returns true
lengthof(r_3); // returns 3

varrintr_3full :={0, 1,2}
isvalue(r_3full); // returns true

isbound(r_3full); // returns true
lengthof(r_3full); // returns 3

The introduction of isbound permits TTCN-3 code to distinguish between r_u and r_3; isvalue alone
cannot do this (it returns false for both).

Syntax:

isbound (in template any_type i) return boolean;

4.13.8. ttcn2string

Syntax:

ttcn2string(in <Templatelnstance> ti) return charstring

This predefined function returns its parameterOs value in a string which is in TTCN-3 syntax. The
returned string has legal ttcn-3 with a few exceptions such as unbound values. Unbound values are

34

returned as "-", which can be used only as fields of assignment or value list notations, but not as top

level assignments (e.g.Ex:=- is illegal). Differences between the output format of ttcn2string()
log2str()

Value/template log2str() ttcn2string()

Unbound value "<unbound>"

Uninitialized template "<uninitialized template>"

Enumerated value name (number) name

4.13.9. string2ttcn

Syntax:

string2ttcn(in charstring ttcn_str, inout <reference> ref)

This predefined function does not have a return value, thus it is a statement. Any error in the input

string will cause an exception that can be caught using @try - @catch blocks. The message string of

the exception contains the exact cause of the error. There might be syntax and semantic errors.
This function uses the module parameter parser of the TITAN runtime, it accepts the same syntax as
the module parameters of the configuration file. Check the documentation chapters for the module
parameters section. There are differences between the ttcn-3 syntax and the configuration file
module parameters syntax, these are described in the documentation chapter of the module
parameters. The second parameter must be a reference to a value or template variable.

Example code:

type record MyRecord { integer a, boolean b }
E

var template MyRecord my_rec

@try {

E string2ttcn("complement ({1,7},{(1,2,3),false}) ifpresent”, my_rec)
E log(my_rec)

E}

E @catch (err_str) {

E log("string2ttcn() failed: ", err_str)

E}

The log output will look like this:

complement ({a:=1,b:=?}, {a:=(1, 2, 3), b :=false }) ifpresent

4.13.10. encode_base64

Syntax:

and

35

encode_base64(in octetstring ostr, in boolean
E use_linebreaks := false) return charstring

The function encode_base64 (in octetstring ostr, in boolean use_linebreaks := false) return
charstring “converts an octetstring “ostr to a charstring. The charstring will contain the Base64
representation of ostr. The use linebreaks parameter adds newlines after every 76 output
characters, according to the MIME specs, if it is omitted, the default value is false.

Example:

encode_base64('42617365363420656E636F64696E6720736368656D65'0) ==
"QMFzZTYO0IGVuY29kaW5nIHNjaGVtZQ=="

4.13.11. decode_base64

Syntax:

decode_base64(in charstring str) return octetstring

The function decode_base64 (in charstring str) return octetstring converts a charstring str
encoded in Base64 to an octetstring. The octetstring will contain the decoded Base64 string of str .
Example:

decode_base64("QmFzZTY0IGVuY29kaW5snIHNjaGVtZQ==") ==
'42617365363420656E636F64696E6720736368656D65'0

4.13.12. json2cbor

Syntax:

json2cbor(in universal charstring us) return octetstring

The function json2cbor(in universal charstring us) return octetstring converts a TITAN encoded
json document into the binary representation of that json document using a binary coding called
CBOR. The encoding follows the recommendations written in the CBOR standard [22] section 4.2.

Example:

json2cbor("{"a"1,"b":2}") == 'A2616101616202'0O

36

4.13.13. cbor2json

Syntax:

cbor2json(in octetstring os) return universal charstring

The function cbor2json(in octetstring os) return universal charstring converts a CBOR encoded
bytestream into a json document which can be decoded using the built in JSON decoder. The
decoding follows the recommendations written in the CBOR standard [22] section 4.1 except that

the indefinite-length items are not made definite before conversion and the decoding of indefinite-
length items is not supported.

Example:

cbor2json('A2616101616202'0) == "{"a":1,"b":2}"

4.13.14. json2bson

Syntax:

json2bson(in universal charstring us) return octetstring

The function json2bson(in universal charstring us) return octetstring converts a TITAN encoded
json document into the binary representation of that json document using a binary coding called
BSON. Only top level json objects and arrays can be encoded. (Note that an encoded top level json
array will be decoded as a json object) The encoding follows the rules written in the BSON standard

[23]. The encoding handles the extension rules written in the MongoDB Extended JSON document
[24]. The encoding of 128-bit float values is not supported.

Example:

json2bson("{"a":1,"b":2}") == '13000000106100010000001062000200000000'0

4.13.15. bson2json

Syntax:

bson2json(in octetstring os) return universal charstring

The function bson2json(in octetstring o0s) return universal charstring converts a BSON encoded
bytestream into a json document which can be decoded using the built in JSON decoder. The
decoding follows the extension rules written in the BSON standard [23]. The decoding handles the

rules written in the MongoDB Extended JSON document [24]. The decoding of 128-bit float values is
not supported.

37

Example:

bson2json('13000000106100010000001062000200000000'0) == "{"a":1,"b":2}"

4.14. Exclusive Boundaries in Range Subtypes

The boundary values used to specify range subtypes can be preceded by an exclamation mark. By
using the exclamation mark the boundary value itself can be excluded from the specified range. For
example integer range (!0..110) is equivalent to range (1..9). In case of float type open intervals can
be specified by using excluded boundaries, for example (0.0..!1.0) is an interval which contains 0.0
but does not contain 1.0.

4.15. Special Float Values Infinity and not_a_number

The keyword infinity (which is also used to specify value range and size limits) can be used to
specify the special float values -infinity and +infinity, these are equivalent to MINUS-INFINITY and
PLUS-INFINITY used in ASN.1. A new keyword not _a number has been introduced which is
equivalent to NOT-A-NUMBER used in ASN.1. The -infinity and +infinity and not_a_number special
values can be used in arithmetic operations. If an arithmetic operationOs operand is not_a_number
then the result of the operation will also be not_a_number. The special value not_a_number cannot
be used in a float range subtype because itOs an unordered value, but can be added as a single value,
for example subtype (0.0 .. infinity, not_a number) contains all positive float values and the
not_a_number value.

4.16. TTCN-3 Preprocessing

Preprocessing of the TTCN-3 files with a C preprocessor is supported by the compiler. External
preprocessing is used: the Makefile Generator generates a Makefile which will invoke the C
preprocessor to preprocess the TTCN-3 files with the suffix Sttenpp . The output of the C
preprocessor will be generated to an intermediate file with the suffix Stten . The intermediate files
contain the TTCN-3 source code and line markers. The compiler can process these line markers
along with TTCN-3. If the preprocessing is done with the -P option [13], the resulting code will not
contain line markers; it will be compatible with any standard TTCN-3 compiler. The compiler will

use the line markers to give almost [14] correct error or warning messages, which will point to the
original locations in the .ttcnpp file. The C preprocessor directive #"include can be used in .ttcnpp
files; the Makefile Generator will treat all files with suffix Mttenink as TTCN-3 include files. The
Sttenin - files will be added to the Makefile as special TTCN-3 include files which will not be
translated by the compiler, but will be checked for modification when building the test suite.

Extract from the file:

38

Example.ttcnpp:

module Example {

function func()

{

#ifdef DEBUG
log("Example: DEBUG");
#else

log("Example: RELEASE");
#endif

The output is a preprocessed intermediate file

code:

E

1 "Example.ttcnpp”
module Example {
function func()

{
log("Example: RELEASE");

}

Example.ttcn . The resulting output from the above

The line marker (# 1 "Example.ttcnpp”) tells the compiler what the origin of the succeeding code is.

4.17. Parameter List Extensions

In addition to standardized TTCN-3 parameter handling described in 5.4.2 of [1] TITAN also
supports the mixing of list notation and assignment notation in an actual parameter list.

4.17.1. Missing Named and Unnamed Actual Parameters

To facilitate handling of long actual parameter lists in the TITAN implementation, the actual
parameter list consists of two optional parts: an unnamed part followed by a named part, in this
order. In the actual parameter list a value must be assigned to every mandatory formal parameter
either in the named part or in the unnamed part. (Mandatory parameter is one without default

value assigned in the formal parameter list.) Consequently, the unnamed part, the named part or
both may be omitted from the actual parameter list. Omitting the named part from the actual
parameter lists provides backward compatibility with the standard notation.

The named and unnamed parts are separated by a comma as are the elements within both lists. It is
not allowed to assign value to a given formal parameter in both the named and the unnamed part

of the actual parameter list.

There can be at most one unnamed part, followed by at most one named part. Consequently, an

39

unnamed actual parameter may not follow a named parameter.

Named actual parameters must follow the same relative order as the formal parameters. It is not
allowed to specify named actual parameters in an arbitrary order.

Examples

The resulting parameter values are indicated in brackets in the comments:

function myFunction(integer p_parl, boolean p_par2 := true) { E }
control {

/[the actual parameter list is syntactically correct below:
myFunction(1, p_par2 := false); // (1, false)

myFunction(2); // (2, true)

myFunction(p_parl := 3, p_par2 := false); // (3, false)

/[the actual parameter list is syntactically erroneous below:
myFunction(0, true, -); // too many parameters

myFunction(1, p_parl := 1); // p_parl is given twice
myFunction(); // no value is assigned to mandatory p_parl
myFunction(p_par2 := false, p_parl := 3); // out of order
myFunction(p_par2 := false, 1); // unnamed part cannot follow
/[l named part

}

4.18. function , altstep and testcase References

Although TITAN supports the behaviour type package ([5]) of the TTCN-3 standard, but this feature
was included in the standard with a different syntax.

It is allowed to create TTCN-3 types of functions , alisteps and testcases. Values, for example
variables, of such types can carry references to the respective TTCN-3 definitions. To facilitate
reference using, three new operations (refers , derefers and apply) were introduced. This new
language feature allows to create generic algorithms in TTCN-3 with late binding, (i.e.Ecode in which

the function to be executed is specified only at runtime).

4.19. Function Types with a RunsOn_self Clause

A function type or an altstep type, defined with a standard runs on clause, can use all constants,
variables, timers and ports given in the component type definition referenced by the runs on clause
(see chapter 16 of [1]).

A function type or an altstep type, defined with the TITAN-introduced runs on self clause, similarly,
makes use of the resources of a component type; however, the component type in question is not
given in advance. When an altstep or a function is called via a function variable, that is, a
reference, using the apply operation, it can use the resources defined by the component type
indicated in the runs on clause of the actually referenced function or altstep.

The "runs on self" construct is permitted only for function and altstep types. Any actual function or

40

altstep must refer to a given component type name in their runs on clause.

A variable with type of function type is called a function variable . Such variables can contain
references to functions or altsteps. At function variable assignment, component type compatibility
checking is performed with respect to the component context of the assignment statement and the
“runs on" clause of the assigned function or altstep. When the apply() operator is applied to a
function variable, no compatibility checking is performed.

The rationale for this distinction is the following: due to type compatibility checking at the time of

value assignment to the function variable, the TTCN-3 environment can be sure that any non- null
value of the variable is a function reference that is component-type-compatible with that
component that is actually executing the code using the apply() operator.

As a consequence of this, it is forbidden to use values of function variables as arguments to the
TTCN-3 operators start() or send().

Example of using the clause runs on self in a library

A component type may be defined as an extension of another component type (using the standard
extends keyword mentioned in chapter 6.2.10.2 of [1]). The effect of this definition is that the
extended component type will implicitly contain all constant, variable, port and timer definitions

from the parent type as well. In the example below, the component type User_CTaggregates its own
constant, variable, port and timer definitions (resources) with those defined in the component type
Library_CT (see line a).

The library developer writes a set of library functions that have a runs on Library CT clause (see
line h). Such library functions may offer optional references to other functions that are supposed to

be specified by the user of the library (see line). We say in this case that the library function may

call user-provided callback functions via function variables. These function variables must have a
type specified; optionally with a runs on clause. If this runs on clause refers to an actual component
type name, then this actual type name must be known at the time of writing the library.

Library functions that runs on Library_CT can run on other component types as well, provided that
the actual component type is compatible with Library CT (see chapter 6.3.3 of [1]). An obvious
design goal for the library writer is to permit references to any callback function that has a
component-type-compatible runs on clause. However, the cardinality of compatible component
types is infinitely large; therefore, they cannot be explicitly referenced by the function type
definitions of the library.

The "runs on self" concept provides a remedy for this contradiction and allows conceiving library
components prepared to take up user-written "plug-ins".

In the code excerpt below, function f_LibraryFunction (which has the clause runs on Library CT)
uses the function reference variable v_callBackRef_self (defined in Library CT).The function
f MyCallbackFunction (see line b) has a runs on User CT clause. User CT(see line a) extends
Library CT, therefore it is suitable for running library function with runs on Library_CT clause, for
example.

When the assignment to the function variable v_CallbackRef_self is performed (see line c) inside
f MyUserFunction (that is, inside the context User C7J, then compatibility checking is performed.

41

Since User_CTis compatible with Library CT, the assignment is allowed.

Direct call to f_MyCallbackFunction() with runs on User_CT from a runs on Library CT context (see
line g) would cause semantic error according to the TTCN3 language. However, calling the function
via v_CallBackRef_self is allowed (see line d).

module RunsOn_Self

{

// = = = = = = = = = = = = ==
/[Function Types

// = = = = = = = = = = = = ==
/- line f)

type function CallbackFunctionRefRunsonSelf FT () runs on self;

[[======== ========= ========= ===== ==========
//[Component Types

[[======== ========= ========= ===== ==========
type component Library CT

{

/[----line e)

E var CallbackFunctionRefRunsonSelf _FT v_CallbackRef_self := null;
E var integer v_Lib;

}

/[---- line a)

type component User_CT extends Library CT

{

E var integer v_User;

}

/[---- line h)

function f_LibraryFunction () runs on Library CT
{

/[---- line g)

E // Direct call of the callback function would cause semantic ERROR
/If_MyCallbackFunction();

E if (v_CallbackRef_self I= null)

E{

E // Calling a function via reference that has a "runs on self" in its header
E //is always allowed with the exception of functions/altsteps without runs
E // on clause

/I line d)
E v_CallbackRef_self.apply();
E}

Ml end f_LibraryFunction
function f_MyUserFunction () runs on User_CT

{

E // This is allowed as f_MyCallbackFunction has runs on clause compatible

42

E // with the runs on clause of this function (f_MyUserFunction)

E // The use of function/altstep references with "runs on self" in their

E // headers is limited to call them on the given component instance; i.e.

E // allowed: assignments, parameterization and activate (the actual function's
=¥/} runs on is compared to the runs on of the function in which

E/l the operation is executed)

E // not allowed: start, sending and receiving

E // no check is needed for apply!

/[---- line ¢)

E v_CallbackRef_self := refers (f_MyCallbackFunction);

E // This is allowed as Library_CT is a parent of User_CT
E // Pls. note, as the function is executing on a User_CT
E // instance, it shall never cause a problem of calling

E // a callback function with "runs on User_CT" from it.

E f_LibraryFunction();

Hlend f_MyUserFunction

/[---- line b)
function f_MyCallbackFunction () runs on User CT
{I*application/dependent behaviour*/}

} /1 end of module RunsOn_Self

4.20. TTCN-3 Macros

The compiler and the run-time environment support the following non-standard macro notation in
TTCN-3 modules. All TTCN-3 macros consist of a percent (%) character followed by the macro
identifier. Macro identifiers are case sensitive. The table below summarizes the available macros
and their meaning. Macro identifiers not listed here are reserved for future extension.

Table 5. TTCN-3 macros

Macro Meaning

%moduleld name of the TTCN-3 module

%definitionid name of the top-level TTCN-3 definition

%testcaseld name of the test case that is currently being
executed

%fileName name of the TTCN-3 source file

%lineNumber number of line in the source file

The following rules apply to macros:

¥ All macros are substituted with a value of type charstring . They can be used as operands of
complex expressions (concatenation, comparison, etc.).

¥ All macros except %testcaseld are evaluated during compilation and they can be used anywhere

43

in the TTCN-3 module.

¥ Macro %testcaseld is evaluated at runtime. It can be used only within functions and altsteps
that are being run on test components (on the MTC or PTCs) and within testcases. It is not
allowed to use macro %testcaseld in the module control part. If a function or altstep that
contains macro %testcaseld is called directly from the control part the evaluation of the macro
results in a dynamic test case error.

¥ The result of macro %testcaseld is not a constant thus it cannot be used in the value of TTCN-3
constants. It is allowed only in those contexts where TTCN-3 variable references are permitted.

¥ Macro %definitionld is always substituted with the name of the top-level module definition that
it is used in. [15] For instance, if the macro appears in a constant that is defined within a
function then the macro will be substituted with the functionOs name rather than the one of the
constant. When used within the control part macro %definitionld is substituted with the word
OcontrolO.

¥ Macro %fileNameis substituted with the name of the source file in the same form as it was
passed to the compiler. This can be a simple file name, a relative or an absolute path name.

¥ The result of macro %lineNumberis always a string that contains the current line number as a
decimal number. Numbering of lines starts from 1. All lines of the input file (including
comments and empty lines) are counted. When it needs to be used in an integer expression a
conversion is necessary: str2int(%lineNumber) . The above expression is evaluated during
compilation without any runtime performance penalty.

¥ Source line markers are considered when evaluating macros %fileName and %lineNumber In
preprocessed TTCN-3 modules the macros are substituted with the original file name and line
number that the macro comes from provided that the preprocessor supports it.

¥ When macros are used in log() statements, they are treated like literal strings rather than
charstring value references. That is, quotation marks around the strings are not used and
special characters within them are not escaped in the log file.

¥ For compatibility with the C preprocessor the compiler also recognizes the following C style
macros: __ FILE _ isidentical to %fileNameand __ LINE__ is identical to str2int(%lineNumber) .

¥ Macros are not substituted within quotation marks (i.e.Ewithin string literals and attributes).

¥ The full power of TTCN-3 macros can be exploited in combination with the C preprocessor.

Example:

44

module M {

/l the value of ¢c_MyConst will be "M"

const charstring c_MyConst := %moduleld;

/I MyTemplate will contain 28

template integer t_MyTemplateWithVeryLongName := lengthof(%definitionld);
function f_MyFunction() {

/l the value of ¢c_MyLocalConstl will be "f_MyFunction"

const charstring c_MyLocalConstl := %definitionld,;

/l the value of c_MyLocalConst2 will be "%definitionid"

const charstring c_MyLocalConst2 := "%definitionld";

/l the value of c_MyLocalConst3 will be "12"

const charstring ¢_MyLocalConst3 := %lineNumber; //This is line 12
/l the value of c_MyLocalConst4 will be 14

const integer ¢_MyLocalConst4 := str2int(%lineNumber);//This is line 14
/l the line below is invalid because %testcaseld is not a constant
const charstring c_MylnvalidConst := %testcaseld;

/I this is valid, of course

var charstring v_MyLocalVar := %testcaseld;

// the two log commands below give different output in the log file
log(""function:", %definitionld, " testcase: ", %testcaseld);

/I printout: function: f_MyFunction testcase: tc_MyTestcase
log("function:”, c_MyLocalConstl, " testcase: ", v_MyLocalVar);

I/l printout: function: "f_MyFunction" testcase: "tc_MyTestcase"

}

}

4.21. Component Type Compatibility

The ETSI standard defines type compatibility of component types for component reference values
and for functions with Oruns onO clause. In order to be compatible, both component types are
required to have identical definitions (cf. [1], chapter 6.3.3).

Compatibility is an asymmetric relation, if component type B is compatible with
NOTE component type A, the opposite is not necessarily true. (E.g., component type B may
contain definitions absent in component type A.)

All definitions from the parent type are implicitly contained when the keyword extends appears in
the type definition (cf. [1], chapter 6.2.10.2) and so the required identity of the type definitions is
ensured. The compiler considers component type B to be compatible with A if B has an extends
clause, which contains A or a component type that is compatible with A.

Example:

type component A { var integer i; }
type component B extends A {
Il extra definitions may be added here

}

45

In order to provide support for existing TTCN-3 code (e.g.Estandardized test suites) it is allowed to

explicitly signal the compatibility relation between component types using a special extension
attribute. Using such attributes shall be avoided in newly written TTCN-3 modules. Combining
component type inheritance and the attribute extension is possible, but not recommended.

Thus, the compiler considers component type B to be compatible with A if B has an extension

attribute that points to A as base component type and all definitions of A are present and identical
in B.

type component A { var integer i; }

type component B {

var integer i; // definitions of A must be repeated
var octetstring o; // new definitions may be added
} with {

extension "extends A"

}

4.21.1. Implementation Restrictions

The list of definitions shared with different compatible component types shall be distinct. If

component type Z is compatible with both X and Y and neither X is compatible with Y nor Y is
compatible with X then X and Y shall not have definitions with identical names but different origin.

If both X and Y are compatible with component type C then all definitions in X and Y which are
originated from C are inherited by Z on two paths.

Example: According to the standard component type Z should be compatible with both X and Y, but
the compatibility relation cannot be established because X and Y have a definition with the same
name.

type component X { timer T1, T2; }

type component Y { timer T1, T3; }

type component Z { timer T1, T2, T3; }

with { extension "extends X, Y" }

/[invalid because the origin of T1 is ambiguous

The situation can be resolved by introducing common ancestor C for X and Y, which holds the
shared definition.

type component C { timer T1; }

type component X { timer T1, T2; } with { extension "extends C" }
type component Y { timer T1, T3; } with { extension "extends C" }
type component Z {

timer T1, // origin is C

T2, // origin is X

T3; // originis Y

} with { extension "extends X, Y"}

46

Circular compatibility chains between component types are not allowed. If two component types
need to be defined as identical, type aliasing must be used instead of compatibility.

The following code is invalid:

type component A {

E

/I the same definitions as in B
} with { extension "extends B" }
type component B {

E

I/l the same definitions as in A
} with { extension "extends A" }

When using the non-standard extension attribute the initial values of the corresponding definitions
of compatible components should be identical. The compiler does not enforce this for all cases;
however, in the case of different initial values the resulting run-time behavior is undefined. If the
initial values cannot be determined at compile time (module parameters) the compiler will remain
silent. In other situations the compiler may report an error or a warning.

All component types are compatible with each empty component type. Empty components are
components which have neither own nor inherited definitions.

4.22. Implicit Message Encoding

The TTCN-3 standard [1] does not specify a standard way of data encoding/decoding. TITAN has a
common C++ API for encoding/decoding; to use this API external functions are usually needed. The
common solution is to define a TTCN-3 external function and write the C++ code containing the API
calls. In most cases the C++ code explicitly written to an auxiliary C++ file contains only simple code
patterns which call the encoding/decoding API functions on the specified data. In TITAN there is a
TTCN-3 language extension which automatically generates such external functions.

Based on this automatic encoding/decoding mechanism, dual-faced ports are introduced. Dual-
faced ports have an external and an internal interface and can automatically transform messages
passed through them based on mapping rules defined in TTCN-3 source files. These dual-faced ports
eliminate the need for simple port mapping components and thus simplify the test configuration.

4.22.1. Dual-faced Ports

In the TTCN-3 standard ([1]), a port type is defined by listing the allowed incoming and outgoing
message types. Dual-faced ports have on the other hand two different message lists: one for the
external and one for the internal interface. External and internal interfaces are given in two
distinct port type definitions. The dual-faced concept is applicable to message based ports and the
message based part of mixed ports.

Dual-faced port types must have user attribute to designate its external interface. The internal
interface is given by the port type itself. A port type can be the external interface of several
different dual-faced port types.

a7

The internal interface is involved in communication operations (send receive , etc.) and the external
interface is used when transferring messages to/from other test components or the system under

test. The operations connect and mapapplied on dual-faced ports will consider the external port type
when checking the consistency of the connection or mapping. [16]

Dual-faced Ports between Test Components

Dual-faced ports used for internal communication must have the attributes internal in addition to
user (see section Visibility Modifiers). The referenced port type describing the external interface
may have any attributes.

Dual-faced Ports between Test Components and the SUT

The port type used as external interface must have the attribute provider . These dual-faced port
types do not have their own test port; instead, they use the test port belonging to the external
interface when communicating to SUT. Using the attribute provider implies changes in the Test Port
API of the external interface. For details see the section "Provider port types" in [16].

If there are several entities within the SUT to be addressed, the dual-faced port type must have the
attribute address in addition to user. In this case the external interface must have the attribute
address too. For more details see section Visibility Modifiers

4.22.2. Type Mapping

Mapping is required between the internal and external interfaces of the dual-faced ports because
the two faces are specified in different port type definitions, thus, enabling different sets of
messages.

Messages passing through dual-faced ports will be transformed based on the mapping rules.
Mapping rules must be specified for the outgoing and incoming directions separately. These rules
are defined in the attribute user of the dual-faced port type.

An outgoing mapping is applied when a send operation is performed on the dual-faced port. The
outcome of the mapping will be transmitted to the destination test component or SUT. The outgoing
mappings transform each outgoing message of the internal interface to the outgoing messages of
the external interface.

An incoming mapping is applied when a message arrives on a dual-faced port from a test
component or the SUT. The outcome of the mapping will be inserted into the port queue and it will
be extracted by the receive operation. The incoming mappings transform each incoming messages
of the external interface to the incoming message of the internal interface.

Mapping Rules

A mapping rule is an elementary transformation step applied on a message type (source type)
resulting in another message type (target type). Source type and target type are not necessarily
different.

Mapping rules are applied locally in both directions, thus, an error caused by a mapping rule
affects the test component owning the dual-faced port, not its communication partner.

48

Mappings are given for each source type separately. Several mapping targets may belong to the
same source type; if this is the case, all targets must be listed immediately after each other (without
repeating the source type).

The following transformation rules may apply to the automatic conversion between the messages
of the external and internal interfaces of a dual-faced port:

¥ No conversion. Applicable to any message type, this is a type preserving mapping, no value
conversion is performed. Source and target types must be identical. This mapping does not have
any options. For example, control or status indication massages may transparently be conveyed
between the external and the internal interfaces. Keyword used in attribute user of port type
definition: simple.

¥ Message discarding. This rule means that messages of the given source type will not be
forwarded to the opposite interface. Thus, there is no destination type, which must be indicated
by the not used symbol (-). This mapping does not have any options. For example, incoming
status indication massages of the external interface may be omitted on the internal interface.
Keyword used in attribute user of port type definition: discard .

¥ Conversion using the built-in codecs. Here, a corresponding encoding or decoding subroutine of
the built-in codecs (for example RAW, TEXT or BER) is invoked. The conversion and error
handling options are specified with the same syntax as used for the encoding/decoding
functions, see section Attribute Syntax . Here, source type corresponds to input type and target
type corresponds to output type of the encoding. Keyword used in attribute user of port type
definition: encodeor decode either followed by an optional errorbehavior .

¥ Function or external function. The transformation rule may be described by an (external)
function referenced by the mapping. The function must have the attribute extension specifying
one of the prototypes given in section Encoder/decoder Function Prototypes . The incoming and
the outgoing type of the function must be equal to the source and target type of the mapping,
respectively. The function may be written in TTCN-3, C++ or generated automatically by the
compiler. This mapping does not have any options. Keyword used in attribute user of port type
definition: function .

Mapping with One Target

Generally speaking, a source type may have one or more targets. Every mapping target can be used
alone. However, only one target can be designated with the following rules if

¥ no conversion takes place (keyword simple);

¥ encoding a structured message (keyword encode [17];

¥ an (external) function with prototype convert or fast is invoked

Mapping with More Targets

On the other hand, more than one target is needed, when the type of an encoded message must be
reconstructed. An octetstring, for example, can be decoded to a value of more than one structured
PDU type. It is not necessary to specify mutually exclusive decoder rules. It is possible and useful to
define a catch-all rule at the end to handle invalid messages.

49

The following rules may be used with more than one target if

¥ an (external) function with prototype backtrack is invoked;
¥ decoding a structured message (keyword decode;

¥ (as a last alternative) the source message is discarded

The conversion rules are tried in the same order as given in the attribute until one of them
succeeds, that is, the function returns 0 OK or decoding is completed without any error. The
outcome of the successful conversion will be the mapped result of the source message. If all
conversion rules fail and the last alternative is discard , then the source message is discarded.
Otherwise dynamic test case error occurs.

Mapping from Sliding Buffer

Using sliding buffers is necessary for example, if a stream-based transport, like TCP, is carrying the
messages. A stream-based transport is destroying message boundaries: a message may be torn
apart or subsequent messages may stick together.

The following rules may be used with more than one target when there is a sliding buffer on the
source side if

¥ an (external) function with prototype sliding is invoked;

¥ decoding a structured message (keyword decode

Above rules imply that the source type of this mapping be either octetstring or charstring . The
run-time environment maintains a separate buffer for each connection of the dual-faced port.
Whenever data arrives to the buffer, the conversion rules are applied on the buffer in the same

order as given in the attribute. If one of the rules succeeds (that is, the function returns 0 or
decoding is completed without any error) the outcome of the conversion will appear on the
destination side. If the buffer still contains data after successful decoding, the conversion is
attempted again to get the next message. If one of the rules indicates that the data in the buffer is
insufficient to get an entire message (the function returns 2 INCOMPLETE_MES®hk@Ecoding fails
with error code ET_INCOMPL_M$#t&n the decoding is interrupted until the next fragment arrives in

the buffer. If all conversion rules fail (the function returns 1 NOT_MY_TYetdecoding fails with any
other error code than ET_INCOMPL_M8@amic test case error occurs.

Decoding with sliding should be the last decoding option in the list of decoding
NOTE options and there should be only one decoding with sliding buffer. In other cases
the first decoding with sliding buffer might disable reaching later decoding options.

4.22.3. Encoder/decoder Function Prototypes

Encoder/decoder functions are used to convert between different data (message) structures. We can
consider e.g.Ean octet string received from the remote system that should be passed to the upper
layer as a TCP message.

Prototypes are attributes governing data input/output rules and conversion result indication. In
other words, prototypes are setting the data interface types. The compiler will verify that the

50

parameters and return value correspond to the given prototype. Any TTCN-3 function (even
external ones) may be defined with a prototype. There are four prototypes defined as follows:

¥ prototype convert

Functions of this prototype have one parameter (i.e.Ethe data to be converted), which shall be an
in value parameter, and the result is obtained in the return value of the function.

Example:

external function f_convert(in A param_ex) return B
with { extension "prototype(convert)" }

+ The input data received in the parameter param_exof type A is converted. The result returned is of

type B.

¥ prototype fast

Functions of this prototype have one input parameter (the same as above) but the result is
obtained in an out value parameter rather than in return value. Hence, a faster operation is
possible as there is no need to copy the result if the target variable is passed to the function. The
order of the parameters is fixed: the first one is always the input parameter and the last one is
the output parameter.

Example:

external function f_fast(in A param_1, out B param_2)
with { extension "prototype(fast)" }

+ The input data received in the parameter param_Jof type A is converted. The resulting data of type
B is contained in the output parameter param_2of type B.

¥ prototype backtrack

Functions of this prototype have the same data input/output structure as of prototype fast , but
there is an additional integer value returned to indicate success or failure of the conversion
process. In case of conversion failure the contents of the output parameter is undefined. These
functions can only be used for decoding. The following return values are defined to indicate the

outcome of the decoding operation:

" 0 (OK. Decoding was successful; the result is stored in the out parameter.

" 1 (NOT_MY_TYHBecoding was unsuccessful because the input parameter does not contain a
valid message of type B. The content of the out parameter is undefined.

Example:

51

external function f_backtrack(in A param_1, out B param_2) return integer
with { extension "prototype(backtrack)" }

The input data received in the parameter param_Jlof type A is converted. The resulting data of type
B is contained in the output parameter param_2of type B. The function return value (an integer)
indicates success or failure of the conversion process.

¥ prototype sliding

Functions of this prototype have the same behavior as the one of prototype backtrack,
consequently, these functions can only be used for decoding. The difference is that there is no

need for the input parameter to contain exactly one message: it may contain a fragment of a
message or several concatenated messages stored in a FIFO buffer. The first parameter of the
function is an inout value parameter, which is a reference to a buffer of type octetstring or
charstring . The function attempts to recognize an entire message. It if succeeds, the message is
removed from the beginning of the FIFO buffer, hence the name of this prototype: sliding
(buffer). In case of failure the contents of the buffer remains unchanged. The return value
indicates success or failure of the conversion process or insufficiency of input data as follows:

" 0 (OK. Decoding was successful; the result is stored in the out parameter. The decoded
message was removed from the beginning of the inout parameter which is used as a sliding
buffer.

1 (NOT_MY_TYHEecoding was unsuccessful because the input parameter does not contain or
start with a valid message of type B. The buffer (inout parameter) remains unchanged. The
content of out parameter is undefined.

" 2 (INCOMPLETE_MESSAu&Eeoding was unsuccessful because the input stream does not
contain a complete message (i.e.Ethe end of the message is missing). The input buffer (inout
parameter) remains unchanged. The content of out parameter is undefined.

Example:

external function f_sliding(inout A param_1, out B param_2) return integer
with { extension "prototype(sliding)" }

+ The first portion of the input data received in the parameter param_1Jlof type Ais converted. The
resulting data of type B is contained in the output parameter param_2of type B. The return value
indicates the outcome of the conversion process.

4.22.4. Automatic Generation of Encoder/decoder Functions

Encoding and decoding is performed by C++ external functions using the built-in codecs. These
functions can be generated automatically by the complier. The present section deals with attributes
governing the function generation.

52

Input and Output Types

Automatically generated encoder/decoder functions must have an attribute prototype assigned. If
the encoder/decoder function has been written manually, only the attribute prototype may be given.
Automatically generated encoder/decoder functions must have either the attribute encode or the

attribute decode In the case of encoding, the input type of the function must be the (structured) type

to be encoded, which in turn must have the appropriate encoding attributes needed for the
specified encoding method. The output type of the encoding procedure must be octetstring (BER,
RAW, XER and JSON coding) or charstring (TEXT coding). In case of decoding the functions work the
other way around: the input type is octetstring or charstring and the output type can be any
(structured) type with appropriate encoding attributes.

Attribute Syntax

The syntax of the encodeand decodeattributes is the following:

("encode"l"decode") "("("RAW"|"BER"|"TEXT"|"XER"|"JSON") ["I" <codec_0ptions>] ")"

BER encoding can be applied only for ASN.1 types.

The <'codec_options™> part specifies extra options for the particular codec. Currently it is
applicable only in case of BER and XML encoding/decoding. The codec_options are copied
transparently to the parameter list of the C++ encoder/decoder function call in the generated
function body without checking the existence or correctness of the referenced symbols.

Example of prototype convert, BER encoding and decoding (the PDU is an ASN.1 type):

external function encode_PDU(in PDU pdu) return octetstring

with { extension "prototype(convert) encode(BER:BER_ENCODE_DER)" }
external function decode_PDU(in octetstring os) return PDU

with { extension "prototype(convert) decode(BER:BER_ACCEPT_ALL)"}

Example of prototype convert, XML encoding and decoding (the PDU is a TTCN-3 type):

external function encode_PDU(in PDU pdu) return octetstring

with { extension "prototype(convert) encode(XER:XER_EXTENDED)" }
external function decode_PDU(in octetstring os) return PDU

with { extension "prototype(convert) decode(XER:XER_EXTENDED)" }

Codec Error Handling

The TITAN codec API has some well defined function calls that control the behavior of the codecs in
various error situations during encoding and decoding. An error handling method is set for each

possible error type. The default error handling method can be overridden by specifying the
errorbehavior attribute:

53

"errorbehavior" "(" <error_type> ":" <error_handling>
{"," <error_type>":" <error_handling>}")"

Possible error types and error handlings are defined in [16], section "The common API". The value
of <error_type> shall be a value of type error_type t without the prefix ET. The value of
<error_handling> shall be a value of type error_behavior_t without the prefix EB.

The TTCN-3 attribute errorbehavior(INCOMPL_ANY:ERRQHRYr example, will be mapped to the
following C++ statement:

TTCN_EncDec::set_error_behavior(TTCN_EncDec::ET_INCOMPL_ANY,
E TTCN_EncDec::EB_ERROR);

When using the backtrack or sliding decoding functions, the default error behavior has to be
changed in order to avoid a runtime error if the in or inout parameter does not contain a type we
could decode. With this change an integer value is returned carrying the fault code. Without this
change a dynamic test case error is generated. Example:

external function decode_PDU(in octetstring os, out PDU pdu) return integer
with {

extension "prototype(backtrack)"

extension "decode(BER:BER_ACCEPT_LONG|BER_ACCEPT_INDEFINITE)"
extension "errorbehavior(ALL:WARNING)"

}

4.22.5. Handling of encode and variant attributes

The TITAN compiler offers two different ways of handling encoding-related attributes:

¥ the new (standard compliant) handling method, and

¥ the legacy handling method, for backward compatibility.

New codec handling

This method of handling encodeand variant attributes is active by default. It supports many of the
newer encoding-related features added to the TTCN-3 standard.

Differences from the legacy method:
¥ encode and variant attributes can be defined for types as described in the TTCN-3 standard

(although the type restrictions for built-in codecs still apply);

¥ a type can have multiple encode attributes (this provides the option to choose from multiple
codecs, even user-defined ones, when encoding values of that type);

¥ ASN.1 types automatically have BERJSONPER(see section PER encoding and decoding through
user defined functions), and XML (if the compiler option -a is set) encoding (they are treated as

54

if they had the corresponding encodeattributes);
¥ encoding-specific variant attributes are supported (e.g.: variant "XML"."untagged");

¥ the parameters encoding_info/decoding _info and dynamic_encoding of predefined functions
encvalue, decvalue, encvalue_unichar and decvalue unichar are supported (the encoding_info
/decoding_info parameters are currently ignored, see also the next point)

¥ the dynamic_encodingparameter can be used for choosing the codec to use for values of types
with multiple encodings, the following values are available: BER:2002 CER:2002DER:2002JSON
OERRAWTEXTXERXML

¥ the self.setencode version of the setencode operation is supported (it can be used for choosing
the codec to use for types with multiple encodings within the scope of the current component);

¥ the @local modifier is supported for encodeattributes;

¥ a typeOs the default codec (used by decmatch templates, the @decoded modifier, and the
predefined functions encvalue, decvalue, encvalue unichar and decvalue unichar when no
dynamic encoding parameter is given) is:

¥ its one defined codec, if it has exactly one codec defined; or
¥ unspecified, if it has multiple codecs defined (the mentioned methods of encoding/decoding can
only be used in this case, if a codec was selected for the type using self.setencode).
Differences from the TTCN-3 standard:
¥ switching codecs during the encoding or decoding of a structure is currently not supported (the
entire structure will be encoded or decoded using the codec used at top level);

¥ the port-specific versions of the setencode operation are not supported (since messages sent
through ports are not automatically encoded; see also dual-faced ports in section Dual-faced
Ports);

¥ the @local modifier only affects encode attributes, it does not affect the other attribute types;

¥ encodeand variant attributes do not affect constants, templates, variables , template variables or
import statements (these are accepted, but ignored by the compiler);

¥ references to multiple definitions in attribute qualifiers is not supported(e.g.: encode (template
all except (t1)) ORAWO);

¥ retrieving attribute values is not supported (e.qg.: var universal charstring x := MyType.encode).
Legacy codec handling

This is the method of handling encode and variant attributes that was used before version 6.3.0 (/6
R3A). It can be activated through the compiler command line option -e.

Differences from the new method:

¥ each codec has its own rules for defining encodeand variant attributes;

¥ a type can only have one encodeattribute (if more than one is defined, then only the last one is
considered), however, it can have variant attributes that belong to other codecs (this can make
determining the default codec tricky);

55

